Statistical Computing with R, Second Edition: Chapman &Hall/CRC The R Series
Autor Maria L. Rizzoen Limba Engleză Hardback – 6 mar 2019
". . . the book serves as an excellent tutorial on the R language, providing examples that illustrate programming concepts in the context of practical computational problems. The book will be of great interest for all specialists working on computational statistics and Monte Carlo methods for modeling and simulation." – Tzvetan Semerdjiev, Zentralblatt Math
Computational statistics and statistical computing are two areas within statistics that may be broadly described as computational, graphical, and numerical approaches to solving statistical problems. Like its bestselling predecessor, Statistical Computing with R, Second Edition covers the traditional core material of these areas with an emphasis on using the R language via an examples-based approach. The new edition is up-to-date with the many advances that have been made in recent years.
Features
- Provides an overview of computational statistics and an introduction to the R computing environment.
- Focuses on implementation rather than theory.
- Explores key topics in statistical computing including Monte Carlo methods in inference, bootstrap and jackknife, permutation tests, Markov chain Monte Carlo (MCMC) methods, and density estimation.
- Includes new sections, exercises and applications as well as new chapters on resampling methods and programming topics.
- Includes coverage of recent advances including R Studio, the tidyverse, knitr and ggplot2
- Accompanied by online supplements available on GitHub including R code for all the exercises as well as tutorials and extended examples on selected topics.
About the Author
Maria Rizzo is Professor in the Department of Mathematics and Statistics at Bowling Green State University in Bowling Green, Ohio, where she teaches statistics, actuarial science, computational statistics, statistical programming and data science. Prior to joining the faculty at BGSU in 2006, she was Assistant Professor in the Department of Mathematics at Ohio University in Athens, Ohio. Her main research area is energy statistics and distance correlation. She is the software developer and maintainer of the energy package for R. She also enjoys writing books including a forthcoming joint research monograph on energy statistics.
Din seria Chapman &Hall/CRC The R Series
- 23% Preț: 1301.84 lei
- Preț: 360.29 lei
- Preț: 343.32 lei
- Preț: 391.57 lei
- Preț: 356.63 lei
- 20% Preț: 548.69 lei
- 8% Preț: 490.79 lei
- 20% Preț: 412.42 lei
- Preț: 400.98 lei
- 8% Preț: 437.61 lei
- 8% Preț: 386.32 lei
- 20% Preț: 455.83 lei
- Preț: 350.96 lei
- Preț: 358.30 lei
- Preț: 352.44 lei
- 8% Preț: 439.44 lei
- 8% Preț: 547.38 lei
- 8% Preț: 418.06 lei
- Preț: 356.63 lei
- 20% Preț: 408.14 lei
- Preț: 260.53 lei
- Preț: 389.17 lei
- Preț: 152.12 lei
- 8% Preț: 438.87 lei
- Preț: 359.66 lei
- 8% Preț: 422.96 lei
- 20% Preț: 308.68 lei
- Preț: 235.73 lei
- 17% Preț: 271.15 lei
- 15% Preț: 502.96 lei
- Preț: 392.33 lei
- 9% Preț: 835.78 lei
- 22% Preț: 447.00 lei
- 25% Preț: 565.16 lei
- 31% Preț: 840.76 lei
- 18% Preț: 1060.50 lei
- 20% Preț: 566.43 lei
- 26% Preț: 1013.16 lei
- 20% Preț: 1045.36 lei
- 25% Preț: 530.74 lei
Preț: 490.74 lei
Preț vechi: 533.41 lei
-8% Nou
Puncte Express: 736
Preț estimativ în valută:
93.92€ • 97.56$ • 78.01£
93.92€ • 97.56$ • 78.01£
Carte disponibilă
Livrare economică 11-25 ianuarie 25
Livrare express 31 decembrie 24 - 04 ianuarie 25 pentru 42.40 lei
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781466553323
ISBN-10: 1466553324
Pagini: 490
Ilustrații: 14 Tables, black and white; 150 Illustrations, black and white
Dimensiuni: 156 x 234 x 35 mm
Greutate: 0.78 kg
Ediția:2 ed
Editura: CRC Press
Colecția Chapman and Hall/CRC
Seria Chapman &Hall/CRC The R Series
ISBN-10: 1466553324
Pagini: 490
Ilustrații: 14 Tables, black and white; 150 Illustrations, black and white
Dimensiuni: 156 x 234 x 35 mm
Greutate: 0.78 kg
Ediția:2 ed
Editura: CRC Press
Colecția Chapman and Hall/CRC
Seria Chapman &Hall/CRC The R Series
Cuprins
Introduction. Probability and Statistics Review. Methods for Generating Random Variables. Visualization of Multivariate Data. Monte Carlo Integration and Variance Reduction. Monte Carlo Methods in Inference. Bootstrap and Jackknife. Permutation Tests. Markov Chain Monte Carlo Methods. Probability Density Estimation. Smoothing and Nonparametric Regression. High Dimensional Data. Numerical Methods in R. Optimization.
Notă biografică
Maria Rizzo is Professor in the Department of Mathematics and Statistics at Bowling Green State University in Bowling Green, Ohio, where she teaches statistics, actuarial science, computational statistics, statistical programming and data science. Prior to joining the faculty at BGSU in 2006, she was Assistant Professor in the Department of Mathematics at Ohio University in Athens, Ohio. Her main research area is energy statistics and distance correlation. She is the software developer and maintainer of the energy package for R. She also enjoys writing books including a forthcoming joint research monograph on energy statistics.
Recenzii
Praise for the First Edition:
"… an excellent tutorial on the R language, providing examples that illustrate programming concepts in the context of practical computational problems. The book will be of great interest for all specialists working on computational statistics and Monte Carlo methods for modeling and simulation."
—Tzvetan Semerdjiev, Zentralblatt Math, 2008, Vol. 1137
"Statistical computing and computational statistics are two areas of statistics described as computational, graphical, and numerical approaches to solving statistical problems. Statistical Computing with R comprises, thorough and examples-based approach, the conventional core material of computational statistics with an emphasis on R... This book includes standard statistical computing topics using the R language... All examples in the text are realised in R. Software is actively maintained, it has good connectivity to various types of data and other systems, and it is versatile. In addition, R is very stable and reliable... The book also includes exercises and applications in all chapters, as well as coverage of recent advances including R Studio. Many examples are included, fully implemented in the R statistical
computing environment, and the R code for the examples can be downloaded from the author’s website. Most examples and exercises apply datasets accessible in the R distribution or simulated data. The author, Maria L. Rizzo, is a Full Professor at the Department of Mathematics and Statistics of Bowling Green State University (US) and is an expert on Applied Statistics, Statistical Computing, and Energy Statistics... After finishing the book, I feel that it is a well-written text useful for biostatisticians and graduate teachers, principally because it is written by a leading expert who is engaged in statistical modelling and methodological developments and applications in the real world. In my opinion, the book is a must-have for the interested biostatistician audience."
- Luca Bertolaccini, ISCB December 2019
Praise for the First Edition:
"… an excellent tutorial on the R language, providing examples that illustrate programming concepts in the context of practical computational problems. The book will be of great interest for all specialists working on computational statistics and Monte Carlo methods for modeling and simulation."
—Tzvetan Semerdjiev, Zentralblatt Math, 2008, Vol. 1137
"Statistical computing and computational statistics are two areas of statistics described as computational, graphical, and numerical approaches to solving statistical problems. Statistical Computing with R comprises, thorough and examples-based approach, the conventional core material of computational statistics with an emphasis on R... This book includes standard statistical computing topics using the R language... All examples in the text are realised in R. Software is actively maintained, it has good connectivity to various types of data and other systems, and it is versatile. In addition, R is very stable and reliable... The book also includes exercises and applications in all chapters, as well as coverage of recent advances including R Studio. Many examples are included, fully implemented in the R statistical computing environment, and the R code for the examples can be downloaded from the author’s website. Most examples and exercises apply datasets accessible in the R distribution or simulated data. The author, Maria L. Rizzo, is a Full Professor at the Department of Mathematics and Statistics of Bowling Green State University (US) and is an expert on Applied Statistics, Statistical Computing, and Energy Statistics... After finishing the book, I feel that it is a well-written text useful for biostatisticians and graduate teachers, principally because it is written by a leading expert who is engaged in statistical modelling and methodological developments and applications in the real world. In my opinion, the book is a must-have for the interested biostatistician audience."
- Luca Bertolaccini, ISCB December 2019
"...This book tries to keep a balance between theory and practice, with more focus on the latter...also provides plenty of R codes to help the readers practice what they learned from the book. As stated in the preface, the targeted readers of this book are graduate students and advanced undergraduates with preparation in the relevant mathematics foundations. From this point of view, the content of the book fits well to the anticipated audience...I really appreciate the section on “finding source code” in Chapter 15. A lot of the libraries in R are written in C or Fortran. Occasionally, we need to dig into those codes and make changes to suit our needs. It is very helpful in our daily research to be able to find the source code and compile the changes...Finally, I would like to give credit to the author on making their code available on github. This makes it convenient for readers to try the code themselves without lots of typing. It also allows the authors to easily make updated code available to readers."
- Ling Leng, JASA, September 2020
"… an excellent tutorial on the R language, providing examples that illustrate programming concepts in the context of practical computational problems. The book will be of great interest for all specialists working on computational statistics and Monte Carlo methods for modeling and simulation."
—Tzvetan Semerdjiev, Zentralblatt Math, 2008, Vol. 1137
"Statistical computing and computational statistics are two areas of statistics described as computational, graphical, and numerical approaches to solving statistical problems. Statistical Computing with R comprises, thorough and examples-based approach, the conventional core material of computational statistics with an emphasis on R... This book includes standard statistical computing topics using the R language... All examples in the text are realised in R. Software is actively maintained, it has good connectivity to various types of data and other systems, and it is versatile. In addition, R is very stable and reliable... The book also includes exercises and applications in all chapters, as well as coverage of recent advances including R Studio. Many examples are included, fully implemented in the R statistical
computing environment, and the R code for the examples can be downloaded from the author’s website. Most examples and exercises apply datasets accessible in the R distribution or simulated data. The author, Maria L. Rizzo, is a Full Professor at the Department of Mathematics and Statistics of Bowling Green State University (US) and is an expert on Applied Statistics, Statistical Computing, and Energy Statistics... After finishing the book, I feel that it is a well-written text useful for biostatisticians and graduate teachers, principally because it is written by a leading expert who is engaged in statistical modelling and methodological developments and applications in the real world. In my opinion, the book is a must-have for the interested biostatistician audience."
- Luca Bertolaccini, ISCB December 2019
Praise for the First Edition:
"… an excellent tutorial on the R language, providing examples that illustrate programming concepts in the context of practical computational problems. The book will be of great interest for all specialists working on computational statistics and Monte Carlo methods for modeling and simulation."
—Tzvetan Semerdjiev, Zentralblatt Math, 2008, Vol. 1137
"Statistical computing and computational statistics are two areas of statistics described as computational, graphical, and numerical approaches to solving statistical problems. Statistical Computing with R comprises, thorough and examples-based approach, the conventional core material of computational statistics with an emphasis on R... This book includes standard statistical computing topics using the R language... All examples in the text are realised in R. Software is actively maintained, it has good connectivity to various types of data and other systems, and it is versatile. In addition, R is very stable and reliable... The book also includes exercises and applications in all chapters, as well as coverage of recent advances including R Studio. Many examples are included, fully implemented in the R statistical computing environment, and the R code for the examples can be downloaded from the author’s website. Most examples and exercises apply datasets accessible in the R distribution or simulated data. The author, Maria L. Rizzo, is a Full Professor at the Department of Mathematics and Statistics of Bowling Green State University (US) and is an expert on Applied Statistics, Statistical Computing, and Energy Statistics... After finishing the book, I feel that it is a well-written text useful for biostatisticians and graduate teachers, principally because it is written by a leading expert who is engaged in statistical modelling and methodological developments and applications in the real world. In my opinion, the book is a must-have for the interested biostatistician audience."
- Luca Bertolaccini, ISCB December 2019
"...This book tries to keep a balance between theory and practice, with more focus on the latter...also provides plenty of R codes to help the readers practice what they learned from the book. As stated in the preface, the targeted readers of this book are graduate students and advanced undergraduates with preparation in the relevant mathematics foundations. From this point of view, the content of the book fits well to the anticipated audience...I really appreciate the section on “finding source code” in Chapter 15. A lot of the libraries in R are written in C or Fortran. Occasionally, we need to dig into those codes and make changes to suit our needs. It is very helpful in our daily research to be able to find the source code and compile the changes...Finally, I would like to give credit to the author on making their code available on github. This makes it convenient for readers to try the code themselves without lots of typing. It also allows the authors to easily make updated code available to readers."
- Ling Leng, JASA, September 2020
Descriere
Computational statistics and statistical computing are two areas that employ computational, graphical, and numerical approaches to solve statistical problems, making the versatile R language an ideal computing environment for these fields. This second edition continues to encompass the traditional core material of computational statistics, with an emphasis on using the R language via an examples-based approach. It includes R code for all examples and R notes to help explain the R programming concepts. This edition also features a new chapter on nonparametric regression and smoothing.