Statistical Learning for Biomedical Data: Practical Guides to Biostatistics and Epidemiology
Autor James D. Malley, Karen G. Malley, Sinisa Pajevicen Limba Engleză Paperback – 23 feb 2011
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 323.49 lei 6-8 săpt. | |
Cambridge University Press – 23 feb 2011 | 323.49 lei 6-8 săpt. | |
Hardback (1) | 844.03 lei 6-8 săpt. | |
Cambridge University Press – 23 feb 2011 | 844.03 lei 6-8 săpt. |
Preț: 323.49 lei
Preț vechi: 340.52 lei
-5% Nou
Puncte Express: 485
Preț estimativ în valută:
61.90€ • 65.11$ • 51.72£
61.90€ • 65.11$ • 51.72£
Carte tipărită la comandă
Livrare economică 08-22 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780521699099
ISBN-10: 0521699096
Pagini: 298
Ilustrații: 47 b/w illus. 25 tables
Dimensiuni: 175 x 245 x 11 mm
Greutate: 0.6 kg
Editura: Cambridge University Press
Colecția Cambridge University Press
Seria Practical Guides to Biostatistics and Epidemiology
Locul publicării:Cambridge, United Kingdom
ISBN-10: 0521699096
Pagini: 298
Ilustrații: 47 b/w illus. 25 tables
Dimensiuni: 175 x 245 x 11 mm
Greutate: 0.6 kg
Editura: Cambridge University Press
Colecția Cambridge University Press
Seria Practical Guides to Biostatistics and Epidemiology
Locul publicării:Cambridge, United Kingdom
Cuprins
Preface; Acknowledgements; Part I. Introduction: 1. Prologue; 2. The landscape of learning machines; 3. A mangle of machines; 4. Three examples and several machines; Part II. A Machine Toolkit: 5. Logistic regression; 6. A single decision tree; 7. Random forests – trees everywhere; Part III. Analysis Fundamentals: 8. Merely two variables; 9. More than two variables; 10. Resampling methods; 11. Error analysis and model validation; Part IV. Machine Strategies: 12. Ensemble methods – let's take a vote; 13. Summary and conclusions; References; Index.
Recenzii
'The book is well written and provides nice graphics and numerous applications.' Michael R. Chernick, Technometrics
Descriere
This highly motivating introduction to statistical learning machines explains underlying principles in nontechnical language, using many examples and figures.