Cantitate/Preț
Produs

Statistical Methods for Materials Science: The Data Science of Microstructure Characterization

Editat de Jeffrey P. Simmons, Lawrence F. Drummy, Charles A. Bouman, Marc de Graef
en Limba Engleză Paperback – 31 mar 2021
Data analytics has become an integral part of materials science. This book provides the practical tools and fundamentals needed for researchers in materials science to understand how to analyze large datasets using statistical methods, especially inverse methods applied to microstructure characterization. It contains valuable guidance on essential topics such as denoising and data modeling. Additionally, the analysis and applications section addresses compressed sensing methods, stochastic models, extreme estimation, and approaches to pattern detection.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 41975 lei  6-8 săpt.
  CRC Press – 31 mar 2021 41975 lei  6-8 săpt.
Hardback (1) 124159 lei  6-8 săpt.
  CRC Press – 6 feb 2019 124159 lei  6-8 săpt.

Preț: 41975 lei

Nou

Puncte Express: 630

Preț estimativ în valută:
8033 8475$ 6695£

Carte tipărită la comandă

Livrare economică 02-16 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780367780289
ISBN-10: 0367780283
Pagini: 536
Dimensiuni: 178 x 254 x 28 mm
Greutate: 0.45 kg
Ediția:1
Editura: CRC Press
Colecția CRC Press

Cuprins

1 Materials Science vs. Data Science 2 Emerging Digital Data Capabilities 3 Cultural Differences 4 Forward Modeling 5 Inverse Problems and Sensing 6 Model-Based Iterative Reconstruction for Electron Tomography 7 Statistical reconstruction and heterogeneity characterization in 3-D biological macromolecular complexes  8 Object Tracking through Image Sequences 9 Grain Boundary Characteristics 10 Interface Science and the Formation of Structure 11 Hierarchical Assembled Structures from Nanoparticles  12 Estimating Orientation Statistics 13 Representation of Stochastic Microstructures 14  Computer Vision for Microstructure Representation 15 Topological Analysis of Local Structure  16 Markov Random Fields for Microstructure Simulation 17 Distance Measures for Microstructures  18 Industrial Applications  19 Anomaly Testing  20 Anomalies in Microstructures 21 Denoising Methods with Applications to Microscopy  22 Compressed Sensing for Imaging Applications 23 Dictionary Methods for Compressed Sensing 24 Sparse Sampling in Microscopy


 


 

Notă biografică

Jeffrey P. Simmons, Lawrence F. Drummy, Charles A. Bouman, Marc De Graef

Descriere

This book provides the practical tools and fundamentals needed for researchers in materials science to understand how to analyze large datasets using statistical methods, especially inverse methods applied to microstructure characterization. It contains valuable guidance on essential topics such as denoising and data modeling.