Statistical Process Monitoring Using Advanced Data-Driven and Deep Learning Approaches: Theory and Practical Applications
Autor Fouzi Harrou, Ying Sun, Amanda S. Hering, Muddu Madakyaru, abdelkader Dairien Limba Engleză Paperback – 3 iul 2020
- Uses a data-driven based approach to fault detection and attribution
- Provides an in-depth understanding of fault detection and attribution in complex and multivariate systems
- Familiarises you with the most suitable data-driven based techniques including multivariate statistical techniques and deep learning-based methods
- Includes case studies and comparison of different methods
Preț: 686.87 lei
Preț vechi: 1093.10 lei
-37% Nou
Puncte Express: 1030
Preț estimativ în valută:
131.45€ • 135.61$ • 111.25£
131.45€ • 135.61$ • 111.25£
Carte tipărită la comandă
Livrare economică 26 februarie-12 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780128193655
ISBN-10: 0128193654
Pagini: 328
Dimensiuni: 152 x 229 mm
Greutate: 0.44 kg
Editura: ELSEVIER SCIENCE
ISBN-10: 0128193654
Pagini: 328
Dimensiuni: 152 x 229 mm
Greutate: 0.44 kg
Editura: ELSEVIER SCIENCE
Cuprins
1. Introduction
2. Linear Latent Variable Regression (LVR)-Based Process Monitoring
3. Fault Isolation
4. Nonlinear latent variable regression methods
5. Multiscale latent variable regression-based process monitoring methods
6. Unsupervised deep learning-based process monitoring methods
7. Unsupervised recurrent deep learning schemes for process monitoring
8. Case studies
9. Conclusions and future perspectives
2. Linear Latent Variable Regression (LVR)-Based Process Monitoring
3. Fault Isolation
4. Nonlinear latent variable regression methods
5. Multiscale latent variable regression-based process monitoring methods
6. Unsupervised deep learning-based process monitoring methods
7. Unsupervised recurrent deep learning schemes for process monitoring
8. Case studies
9. Conclusions and future perspectives