Cantitate/Preț
Produs

Statistics and Data Analysis for Financial Engineering: with R examples: Springer Texts in Statistics

Autor David Ruppert, David S. Matteson
en Limba Engleză Hardback – 22 apr 2015
The new edition of this influential textbook, geared towards graduate or advanced undergraduate students, teaches the statistics necessary for financial engineering. In doing so, it illustrates concepts using financial markets and economic data, R Labs with real-data exercises, and graphical and analytic methods for modeling and diagnosing modeling errors. These methods are critical because financial engineers now have access to enormous quantities of data. To make use of this data, the powerful methods in this book for working with quantitative information, particularly about volatility and risks, are essential. Strengths of this fully-revised edition include major additions to the R code and the advanced topics covered. Individual chapters cover, among other topics, multivariate distributions, copulas, Bayesian computations, risk management, and cointegration. Suggested prerequisites are basic knowledge of statistics and probability, matrices and linear algebra, and calculus. There is an appendix on probability, statistics and linear algebra. Practicing financial engineers will also find this book of interest.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 51823 lei  38-45 zile
  Springer – 5 oct 2016 51823 lei  38-45 zile
Hardback (1) 75449 lei  6-8 săpt.
  Springer – 22 apr 2015 75449 lei  6-8 săpt.

Din seria Springer Texts in Statistics

Preț: 75449 lei

Preț vechi: 92010 lei
-18% Nou

Puncte Express: 1132

Preț estimativ în valută:
14444 14863$ 12175£

Carte tipărită la comandă

Livrare economică 28 februarie-14 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9781493926138
ISBN-10: 1493926136
Pagini: 719
Ilustrații: XXVI, 719 p. 221 illus., 108 illus. in color.
Dimensiuni: 155 x 235 x 48 mm
Greutate: 1.22 kg
Ediția:2nd ed. 2015
Editura: Springer
Colecția Springer
Seria Springer Texts in Statistics

Locul publicării:New York, NY, United States

Public țintă

Graduate

Cuprins

Introduction.- Returns.- Fixed income securities.- Exploratory data analysis.- Modeling univariate distributions.- Resampling.- Multivariate statistical models.- Copulas.- Time series models: basics.- Time series models: further topics.- Portfolio theory.- Regression: basics.- Regression: troubleshooting.- Regression: advanced topics.- Cointegration.- The capital asset pricing model.- Factor models and principal components.- GARCH models.- Risk management.- Bayesian data analysis and MCMC.- Nonparametric regression and splines.

Notă biografică

David Ruppert is Andrew Schultz, Jr., Professor of Engineering and Professor of Statistical Science, School of Operations Research and Information Engineering and Department of Statistical Science, Cornell University, where he teaches statistics and financial engineering and is a member of the Program in Financial Engineering. His research areas include asymptotic theory, semiparametric regression, functional data analysis, biostatistics, model calibration, measurement error and astrostatistics. Professor Ruppert received his PhD in Statistics at Michigan State University. He is a Fellow of the American Statistical Association and the Institute of Mathematical Statistics and won the Wilcoxon prize. He is Editor of the Journal of the American Statistical Association-Theory and Methods, former editor of the Electronic Journal of Statistics, former Editor of the Institute of Mathematical Statistics's Lecture Notes--Monographs Series and former Associate Editor of several major statistics journals. Professor Ruppert has published over 125 scientific papers and four books: Transformation and Weighting in Regression, Measurement Error in Nonlinear Models, Semiparametric Regression, and Statistics and Finance: An Introduction.

David S. Matteson is Assistant Professor of Statistical Science, ILR School and Department of Statistical Science, Cornell University, where he is a member of the Center for Applied Mathematics, Field of Operations Research, and the Program in Financial Engineering, and teaches statistics and financial engineering courses. His research areas include multivariate time series, signal processing, financial econometrics, spatio-temporal modeling, dimension reduction, machine learning, and biostatistics. Professor Matteson received his PhD in Statistics at the University of Chicago and his BS in Finance, Mathematics, and Statistics at the University of Minnesota. He received a CAREER Award from the National Science Foundation and won Best Academic Paper Awards from the annual R/Finance conference. He is an Associate Editor of the Journal of the American Statistical Association-Theory and Methods, Biometrics, and Statistica Sinica. He is also an Officer for the Business and Economic Statistics Section of American Statistical Association, and a member of the Institute of Mathematical Statistics and the International Biometric Society.

Textul de pe ultima copertă

The new edition of this influential textbook, geared towards graduate or advanced undergraduate students, teaches the statistics necessary for financial engineering. In doing so, it illustrates concepts using financial markets and economic data, R Labs with real-data exercises, and graphical and analytic methods for modeling and diagnosing modeling errors. Financial engineers now have access to enormous quantities of data. To make use of these data, the powerful methods in this book, particularly about volatility and risks, are essential. Strengths of this fully-revised edition include major additions to the R code and the advanced topics covered. Individual chapters cover, among other topics, multivariate distributions, copulas, Bayesian computations, risk management, multivariate volatility and cointegration. Suggested prerequisites are basic knowledge of statistics and probability, matrices and linear algebra, and calculus. There is an appendix on probability, statistics and linear algebra. Practicing financial engineers will also find this book of interest.
David Ruppert is Andrew Schultz, Jr., Professor of Engineering and Professor of Statistical Science at Cornell University, where he teaches statistics and financial engineering and is a member of the Program in Financial Engineering. Professor Ruppert received his PhD in Statistics at Michigan State University. He is a Fellow of the American Statistical Association and the Institute of Mathematical Statistics and won the Wilcoxon prize. He is Editor of the Journal of the American Statistical Association-Theory and Methods and former Editor of the Electronic Journal of Statistics and of the Institute of Mathematical Statistics's Lecture Notes—Monographs. Professor Ruppert has published over 125 scientific papers and four books: Transformation and Weighting in Regression, Measurement Error in Nonlinear Models, Semiparametric Regression, and Statistics and Finance: An Introduction.
David S. Matteson is Assistant Professor of Statistical Science at Cornell University, where he is a member of the ILR School, Center for Applied Mathematics, Field of Operations Research, and the Program in Financial Engineering, and teaches statistics and financial engineering. Professor Matteson received his PhD in Statistics at the University of Chicago. He received a CAREER Award from the National Science Foundation and won Best Academic Paper Awards from the annual R/Finance conference. He is an Associate Editor of the Journal of the American Statistical Association-Theory and Methods, Biometrics, and Statistica Sinica. He is also an Officer for the Business and Economic Statistics Section of the American Statistical Association, and a member of the Institute of Mathematical Statistics and the International Biometric Society.

Caracteristici

Examples using financial markets and economic data illustrate important concepts R Labs with real-data exercises give students practice in data analysis Integration of graphical and analytic methods for model selection and model checking quantify Helps mitigate risks due to modeling errors and uncertainty Includes supplementary material: sn.pub/extras

Descriere

Descriere de la o altă ediție sau format:

The new edition of this influential textbook, geared towards graduate or advanced undergraduate students, teaches the statistics necessary for financial engineering. In doing so, it illustrates concepts using financial markets and economic data, R Labs with real-data exercises, and graphical and analytic methods for modeling and diagnosing modeling errors. These methods are critical because financial engineers now have access to enormous quantities of data. To make use of this data, the powerful methods in this book for working with quantitative information, particularly about volatility and risks, are essential. Strengths of this fully-revised edition include major additions to the R code and the advanced topics covered. Individual chapters cover, among other topics, multivariate distributions, copulas, Bayesian computations, risk management, and cointegration. Suggested prerequisites are basic knowledge of statistics and probability, matrices and linear algebra, and calculus. There is an appendix on probability, statistics and linear algebra. Practicing financial engineers will also find this book of interest.