Statistics for Data Scientists: An Introduction to Probability, Statistics, and Data Analysis: Undergraduate Topics in Computer Science
Autor Maurits Kaptein, Edwin van den Heuvelen Limba Engleză Paperback – 3 feb 2022
Where contemporary undergraduate textbooks in probability theory or statistics often miss applications and an introductory treatment of modern methods (bootstrapping, Bayes, etc.), and where applied data analysis books often miss a rigorous theoretical treatment, this book provides an accessible but thorough introduction into data analysis, using statistical methods combining the two viewpoints. The book further focuses on methods for dealing with large data-sets and streaming-data and hence provides a single-course introduction of statistical methods for data science.
Din seria Undergraduate Topics in Computer Science
- 20% Preț: 376.05 lei
- 20% Preț: 342.45 lei
- 20% Preț: 339.11 lei
- 20% Preț: 227.15 lei
- 20% Preț: 183.40 lei
- 20% Preț: 245.43 lei
- 20% Preț: 306.71 lei
- 20% Preț: 280.92 lei
- 20% Preț: 226.64 lei
- 20% Preț: 276.82 lei
- 20% Preț: 179.87 lei
- 20% Preț: 395.04 lei
- 20% Preț: 250.22 lei
- 20% Preț: 335.08 lei
- 20% Preț: 300.41 lei
- 20% Preț: 305.61 lei
- 20% Preț: 272.43 lei
- 20% Preț: 341.85 lei
- 20% Preț: 375.65 lei
- 20% Preț: 258.78 lei
- 20% Preț: 206.45 lei
- 20% Preț: 307.16 lei
- 20% Preț: 225.02 lei
- 20% Preț: 217.61 lei
- 20% Preț: 366.84 lei
- 20% Preț: 237.35 lei
- 20% Preț: 374.20 lei
- 20% Preț: 241.37 lei
- 20% Preț: 232.79 lei
- 20% Preț: 454.08 lei
- 20% Preț: 297.28 lei
- 20% Preț: 298.32 lei
- 20% Preț: 567.67 lei
- 20% Preț: 292.18 lei
- 20% Preț: 296.71 lei
- 20% Preț: 294.86 lei
- 20% Preț: 191.35 lei
- 20% Preț: 243.35 lei
- 20% Preț: 291.69 lei
- 20% Preț: 278.10 lei
- 20% Preț: 382.10 lei
- 20% Preț: 184.28 lei
- 20% Preț: 298.11 lei
- 20% Preț: 281.40 lei
- 20% Preț: 754.32 lei
- 20% Preț: 348.75 lei
Preț: 272.66 lei
Preț vechi: 340.83 lei
-20% Nou
Puncte Express: 409
Preț estimativ în valută:
52.18€ • 54.20$ • 43.34£
52.18€ • 54.20$ • 43.34£
Carte disponibilă
Livrare economică 11-25 ianuarie 25
Livrare express 31 decembrie 24 - 04 ianuarie 25 pentru 32.31 lei
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783030105303
ISBN-10: 303010530X
Pagini: 322
Ilustrații: XXIV, 321 p. 53 illus., 19 illus. in color.
Dimensiuni: 155 x 235 x 23 mm
Greutate: 0.49 kg
Ediția:1st ed. 2022
Editura: Springer International Publishing
Colecția Springer
Seria Undergraduate Topics in Computer Science
Locul publicării:Cham, Switzerland
ISBN-10: 303010530X
Pagini: 322
Ilustrații: XXIV, 321 p. 53 illus., 19 illus. in color.
Dimensiuni: 155 x 235 x 23 mm
Greutate: 0.49 kg
Ediția:1st ed. 2022
Editura: Springer International Publishing
Colecția Springer
Seria Undergraduate Topics in Computer Science
Locul publicării:Cham, Switzerland
Cuprins
1 A First Look at Data.- 2 Sampling Plans and Estimates.- 3 Probability Theory.- 4 Random Variables and Distributions.- 5 Estimation.- 6 Multiple Random Variables.- 7 Making Decisions in Uncertainty.- 8 Bayesian Statistics.
Recenzii
“Having taught data analytics at the introductory graduate level, I welcome the authors’ textbook as an essential resource for training well-grounded entry-level data scientists. … A data scientist shall provide competent data science professional services to a client. … Training in both the theory and practice of data analytics is a requirement for such competence. The authors’ textbook definitely provides a valuable resource for such training.” (Harry J. Foxwell, Computing Reviews, July 7, 2022)
Notă biografică
Prof. Dr. Maurits Kaptein works on statistical methods for sequential experimentation. He has extensive experience in research and education in the fields of statistics, machine learning, and research methodology. Maurits works for the Jheronimus Academy of Data Science and for the University of Tilburg. His work has been published in influential journals such as Bayesian Analysis and the Journal of Interactive Marketing.
Textul de pe ultima copertă
This book provides an undergraduate introduction to analysing data for data science, computer science, and quantitative social science students. It uniquely combines a hands-on approach to data analysis – supported by numerous real data examples and reusable [R] code – with a rigorous treatment of probability and statistical principles.
Where contemporary undergraduate textbooks in probability theory or statistics often miss applications and an introductory treatment of modern methods (bootstrapping, Bayes, etc.), and where applied data analysis books often miss a rigorous theoretical treatment, this book provides an accessible but thorough introduction into data analysis, using statistical methods combining the two viewpoints. The book further focuses on methods for dealing with large data-sets and streaming-data and hence provides a single-course introduction of statistical methods for data science.
Caracteristici
Provides an accessible introduction to applied statistics by combining hands-on exercises with mathematical theory Introduces statistical inference in a natural way, using finite samples and real data Contains modern statistical methods including Bayesian decision theory, equivalence testing and statistical modelling