Cantitate/Preț
Produs

Statistik und maschinelles Lernen: Eine mathematische Einführung in klassische und moderne Methoden

Autor Mathias Trabs, Moritz Jirak, Konstantin Krenz, Markus Reiß
de Limba Germană Paperback – 23 iun 2021
Dieses Lehrbuch liefert einen Einstieg in die mathematische Statistik und baut systematisch eine Brücke zum maschinellen Lernen. Dabei werden sowohl klassische und bis heute wichtige Verfahren untersucht als auch moderne Klassifikationsmethoden des statistischen Lernens. Diese werden mathematisch präzise analysiert und anhand von lebensnahen Beispielen illustriert. Das Buch verschafft den Leserinnen und Lesern einen Überblick über statistische Methoden der Datenanalyse und deren mathematischen Grundprinzipien. Der Fokus auf nicht-asymptotische Resultate erlaubt den Zugang zu modernen Anwendungen und führt an aktuelle Forschungsfragen heran. Aufgaben am Kapitelende runden das Buch ab.
Citește tot Restrânge

Preț: 28075 lei

Nou

Puncte Express: 421

Preț estimativ în valută:
5375 5597$ 4460£

Carte tipărită la comandă

Livrare economică 12-26 februarie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783662629376
ISBN-10: 3662629372
Ilustrații: XII, 263 S. 32 Abb., 23 Abb. in Farbe.
Dimensiuni: 168 x 240 mm
Greutate: 0.47 kg
Ediția:1. Aufl. 2021
Editura: Springer Berlin, Heidelberg
Colecția Springer Spektrum
Locul publicării:Berlin, Heidelberg, Germany

Cuprins

Grundlagen der Statistik.- Das lineare Modell.- Effizienz und Exponentialfamilien.- Modellwahl.- Klassifikation.- ANHANG.- Konzepte der Wahrscheinlichkeitstheorie.

Notă biografică

​Mathias Trabs promovierte an der Humboldt-Universität zu Berlin. Nach einer Postdoczeit in Paris wurde er 2016 Juniorprofessor an der Universität Hamburg. Seine Forschung befasst sich mit der hochdimensionalen und nichtparametrischen Statistik.Moritz Jirak promovierte an der Technischen Universität Graz. Seine wissenschaftliche Laufbahn führte über Berlin und Braunschweig an die Universität Wien, wo er seit 2020 Professor ist. Seine Forschungsschwerpunkte liegen in der Analyse von hochdimensionalen Daten und Zeitreihen.
Konstantin Krenz schloss 2019 das Mathematikstudium an der Humboldt-Universität zu Berlin ab, wobei er sich in die angewandte Statistik und optimale Steuerungsprobleme vertiefte. Nach einer Weiterbildung für das Lehramt an Gymnasien unterrichtet er Mathematik und Informatik in Erfurt.
Markus Reiß promovierte an der Humboldt-Universität zu Berlin. Nach Stationen in Paris und Heidelberg kehrte er 2008 als Professor an die Humboldt-Universität zu Berlin zurück. Er ist ein Experte für statistische inverse Probleme und die Statistik stochastischer Prozesse.

Textul de pe ultima copertă

Dieses Lehrbuch liefert einen Einstieg in die mathematische Statistik und baut systematisch eine Brücke zum maschinellen Lernen. Dabei werden sowohl klassische und bis heute wichtige Verfahren untersucht als auch moderne Klassifikationsmethoden des statistischen Lernens. Diese werden mathematisch präzise analysiert und anhand von lebensnahen Beispielen illustriert. Das Buch verschafft den Leserinnen und Lesern einen Überblick über statistische Methoden der Datenanalyse und deren mathematischen Grundprinzipien. Der Fokus auf nicht-asymptotische Resultate erlaubt den Zugang zu modernen Anwendungen und führt an aktuelle Forschungsfragen heran. Aufgaben am Kapitelende runden das Buch ab.

Die Autoren
Mathias Trabs promovierte an der Humboldt-Universität zu Berlin. Nach einer Postdoczeit in Paris wurde er 2016 Juniorprofessor an der Universität Hamburg. Seine Forschung befasst sich mit der hochdimensionalen und nichtparametrischen Statistik.
Moritz Jirak promovierte an der Technischen Universität Graz. Seine wissenschaftliche Laufbahn führte über Berlin und Braunschweig an die Universität Wien, wo er seit 2020 Professor ist. Seine Forschungsschwerpunkte liegen in der Analyse von hochdimensionalen Daten und Zeitreihen.
Konstantin Krenz schloss 2019 das Mathematikstudium an der Humboldt-Universität zu Berlin ab, wobei er sich in die angewandte Statistik und optimale Steuerungsprobleme vertiefte. Nach einer Weiterbildung für das Lehramt an Gymnasien unterrichtet er Mathematik und Informatik in Erfurt.
Markus Reiß promovierte an der Humboldt-Universität zu Berlin. Nach Stationen in Paris und Heidelberg kehrte er 2008 als Professor an die Humboldt-Universität zu Berlin zurück. Er ist ein Experte für statistische inverse Probleme und die Statistik stochastischer Prozesse.

Caracteristici

Verschafft einen Überblick zu Methoden und mathematischen Grundprinzipien
Mathematisch präzise, mit Fokus auf nicht-asymptotische Resultate
Führt hin zu modernen Anwendungen und aktuellen Forschungsfragen
Motiviert mit lebensnahen Beispielen