Cantitate/Preț
Produs

Stem Cells in Modeling Human Genetic Diseases: Stem Cell Biology and Regenerative Medicine

Editat de Mayana Zatz, Oswaldo Keith Okamoto
en Limba Engleză Hardback – 21 aug 2015
While most stem cell books focus on basic aspects and/or cell therapy, this book emphasizes the relevance of stem cells obtained from patients, the so-called “patients in a petri dish” as tools to investigate human genetic diseases for which there are no available effective treatment. Chapters embrace several examples of the use of iPS cell technology, a recent Nobel Prize-winning scientific breakthrough, to obtain patient-specific pluripotent cells from which many types of specialized cells involved in a particular disease can be generated, including psychiatric and neurodegenerative disorders, muscular dystrophies, laminopathies, among others. The text is a current and timely resource for postgraduate students, scientists and clinicians, interested in applications of this rapidly developing field of research in disease modeling, drug development, and emerging issues that it brings to regenerative medicine.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 54827 lei  38-44 zile
  Springer International Publishing – 22 oct 2016 54827 lei  38-44 zile
Hardback (1) 63091 lei  22-36 zile
  Springer International Publishing – 21 aug 2015 63091 lei  22-36 zile

Din seria Stem Cell Biology and Regenerative Medicine

Preț: 63091 lei

Preț vechi: 74225 lei
-15% Nou

Puncte Express: 946

Preț estimativ în valută:
12078 12422$ 10020£

Carte disponibilă

Livrare economică 27 ianuarie-10 februarie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783319183138
ISBN-10: 3319183133
Pagini: 147
Ilustrații: XII, 147 p. 16 illus., 15 illus. in color.
Dimensiuni: 155 x 235 x 14 mm
Greutate: 0.45 kg
Ediția:1st ed. 2015
Editura: Springer International Publishing
Colecția Springer
Seria Stem Cell Biology and Regenerative Medicine

Locul publicării:Cham, Switzerland

Public țintă

Research

Cuprins

Modeling Fragile X Syndrome in Human Pluripotent Cells.- Induced Pluripotent Stem Cells in Familial Dilated Cardiomyopathy.- Induced Pluripotent Stem Cells and Amyotrophic Lateral Sclerosis.- IPS Cells and Spinocerebellar Ataxia.- Induced Pluripotent Stem Cells and Vascular Disease.- iPS Cells and Cardiomyopathies.- Cancer Stem Cells and Chemoresistance.- Stem Cells in Autism Spectrum Disorders.

Recenzii

“The target audience of this book are students, researchers and clinicians interested in the recent developments in the field. The book is well written and, thanks to the good introductory section in each of the chapters, even non-experts in the field will be able to follow. The figures in the book are well-designed … . The book gives a good overview about the current state of research in these fields and can therefore be recommended for interested readers.” (Christian Schnell, Human Genetics, Vol. 135, 2016)

Notă biografică

Dr. Mayana Zatz is a professor of Human and Medical Genetics and is currently the director of the Human Genome Research Center and Institute of stem-cells in genetic disorders, at the University of São Paulo. She completed a Ph.D. in Human and Medical Genetics there and was a post-doc in medical genetics at the University of California. Her research in human and medical genetics focuses mainly on the following aspects of neuromuscular disorders: novel genes identification, genotype-phenotype correlations, mechanisms of clinical variability and stem-cells as a tool to understand gene expression and their therapeutic applications. She published about 300 peer-reviewed papers that were cited 8700 times ( h=43). She has been actively involved in ethical aspects related to genome research, genetic testing and political decisions regarding the approval of the Brazilian embryonic stem-cell bill by the Congress in 2005 and by the Supreme Court in 2008.
Dr. O. Keith Okamoto is a professor in the Department of Genetics and Evolutionary Biology at the University of São Paulo (USP). Prior to joining the University, he was a professor of Neurosciences at the Medical School of the Federal University of São Paulo. He earned his Ph.D. in Biochemistry and Molecular Biology at the USP and he conducted research as a postdoctoral fellow in the Department of Molecular and Cellular Biology at Harvard University, where he was also affiliated to the Harvard’s Bauer Center for Genomics Research. Dr. Okamoto is a member of the Brazilian Cell Therapy Network, and head of the Translational Genomics Laboratory at USP. His current research focuses on the interplay between stem cell biology and cancer, with emphasis on the genetic and molecular mechanisms inducing a stem cell-like phenotype in cancer cells, their role in tumor heterogeneity and aggressiveness, and the contribution of normal stem cells to tumor development and metastasis. Preclinical therapy studies for cancer and some neurological disorders comprise another major scientific interest of his group.

Textul de pe ultima copertă

Using stem cells to investigate currently untreatable human genetic diseases is the focus of this book. Several applications of the Nobel-Prize winning, revolutionary iPS cell technology are explored in detail, including in schizophrenia, autism, Huntington’s disease, Alzheimer’s disease, spinocerebellar ataxia, medulloblastoma heterogeneity, progeria, age-related macular degeneration, and muscular dystrophy . The book is divided into seven sections, each composed of authoritative and detailed chapters. The first section provides a theoretical and practical overview of stem cells in disease modeling. The following sections divide stem cell applications into various classes of pathology-  psychiatric disorders, neurodegenerative disease, neurogenesis-associated disorders, and laminopathies. Following these sections, the book discusses the future perspectives- and challenges- of iPS technology.  
Broad in scope and in audience, Stem Cells in Modeling Human Genetic Diseases  for postgraduate students, scientists, and clinicians interested in applications of the rapidly developing field of stem cell research in disease modeling and drug development and its dynamic role within regenerative medicine.

Caracteristici

Covers several examples of using iPS cell technology in obtaining patient-specific PSCs which can be used to generate many types of specialized disease cells Discusses a wide range of genetic diseases including psychiatric and neurodegenerative disorders and more, for which there are no available treatment Essential for postgraduate students, scientists and clinicians interested in this rapidly developing field’s applications in disease modeling, drug development and emerging issues Includes supplementary material: sn.pub/extras