Stochastic Dynamics
Editat de Hans Crauel, Matthias Gundlachen Limba Engleză Hardback – 26 mar 1999
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 648.89 lei 6-8 săpt. | |
Springer – 22 apr 2013 | 648.89 lei 6-8 săpt. | |
Hardback (1) | 654.30 lei 6-8 săpt. | |
Springer – 26 mar 1999 | 654.30 lei 6-8 săpt. |
Preț: 654.30 lei
Preț vechi: 769.77 lei
-15% Nou
Puncte Express: 981
Preț estimativ în valută:
125.26€ • 128.89$ • 105.59£
125.26€ • 128.89$ • 105.59£
Carte tipărită la comandă
Livrare economică 28 februarie-14 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780387985121
ISBN-10: 0387985123
Pagini: 440
Ilustrații: XXVII, 440 p. 3 illus. in color.
Dimensiuni: 155 x 235 x 27 mm
Greutate: 0.8 kg
Ediția:1999
Editura: Springer
Colecția Springer
Locul publicării:New York, NY, United States
ISBN-10: 0387985123
Pagini: 440
Ilustrații: XXVII, 440 p. 3 illus. in color.
Dimensiuni: 155 x 235 x 27 mm
Greutate: 0.8 kg
Ediția:1999
Editura: Springer
Colecția Springer
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
Stability Along Trajectories at a Stochastic Bifurcation Point.- Bifurcations of One-Dimensional Stochastic Differential Equations.- P-Bifurcations in the Noisy Duffing-van der Pol Equation.- The Stochastic Brusselator: Parametric Noise Destroys Hoft Bifurcation.- Numerical Approximation of Random Attractors.- Random Hyperbolic Systems.- Some Questions in Random Dynamical Systems Involving Real Noise Processes.- Topological, Smooth, and Control Techniques for Perturbed Systems.- Perturbation Methods for Lyapunov Exponents.- The Lyapunov Exponent of the Euler Scheme for Stochastic Differential Equations.- Towards a Theory of Random Numerical Dynamics.- Canonical Stochastic Differential Equations based on Lévy Processes and Their Supports.- On the Link Between Fractional and Stochastic Calculus.- Asymptotic Curvature for Stochastic Dynamical Systems.- Stochastic Analysis on (Infinite-Dimensional) Product Manifolds.- Evolutionary Dynamics in Random Environments.- Microscopic and Mezoscopic Models for Mass Distributions.