Cantitate/Preț
Produs

Subspace, Latent Structure and Feature Selection: Statistical and Optimization Perspectives Workshop, SLSFS 2005 Bohinj, Slovenia, February 23-25, 2005, Revised Selected Papers: Lecture Notes in Computer Science, cartea 3940

Editat de Craig Saunders, Marko Grobelnik, Steve Gunn, John Shawe-Taylor
en Limba Engleză Paperback – 16 mai 2006

Din seria Lecture Notes in Computer Science

Preț: 32217 lei

Preț vechi: 40272 lei
-20% Nou

Puncte Express: 483

Preț estimativ în valută:
6166 6405$ 5121£

Carte tipărită la comandă

Livrare economică 03-17 februarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783540341376
ISBN-10: 3540341374
Pagini: 224
Ilustrații: X, 209 p.
Dimensiuni: 155 x 235 x 12 mm
Greutate: 0.32 kg
Ediția:2006
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seriile Lecture Notes in Computer Science, Theoretical Computer Science and General Issues

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

Invited Contributions.- Discrete Component Analysis.- Overview and Recent Advances in Partial Least Squares.- Random Projection, Margins, Kernels, and Feature-Selection.- Some Aspects of Latent Structure Analysis.- Feature Selection for Dimensionality Reduction.- Contributed Papers.- Auxiliary Variational Information Maximization for Dimensionality Reduction.- Constructing Visual Models with a Latent Space Approach.- Is Feature Selection Still Necessary?.- Class-Specific Subspace Discriminant Analysis for High-Dimensional Data.- Incorporating Constraints and Prior Knowledge into Factorization Algorithms – An Application to 3D Recovery.- A Simple Feature Extraction for High Dimensional Image Representations.- Identifying Feature Relevance Using a Random Forest.- Generalization Bounds for Subspace Selection and Hyperbolic PCA.- Less Biased Measurement of Feature Selection Benefits.