Symmetrization and Stabilization of Solutions of Nonlinear Elliptic Equations: Fields Institute Monographs, cartea 36
Autor Messoud Efendieven Limba Engleză Hardback – 26 oct 2018
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 506.13 lei 38-44 zile | |
Springer International Publishing – 26 ian 2019 | 506.13 lei 38-44 zile | |
Hardback (1) | 590.63 lei 6-8 săpt. | |
Springer International Publishing – 26 oct 2018 | 590.63 lei 6-8 săpt. |
Preț: 590.63 lei
Preț vechi: 694.86 lei
-15% Nou
Puncte Express: 886
Preț estimativ în valută:
113.03€ • 117.34$ • 94.25£
113.03€ • 117.34$ • 94.25£
Carte tipărită la comandă
Livrare economică 22 martie-05 aprilie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783319984063
ISBN-10: 3319984063
Pagini: 244
Ilustrații: XVII, 258 p. 3 illus.
Dimensiuni: 155 x 235 mm
Greutate: 0.6 kg
Ediția:1st ed. 2018
Editura: Springer International Publishing
Colecția Springer
Seria Fields Institute Monographs
Locul publicării:Cham, Switzerland
ISBN-10: 3319984063
Pagini: 244
Ilustrații: XVII, 258 p. 3 illus.
Dimensiuni: 155 x 235 mm
Greutate: 0.6 kg
Ediția:1st ed. 2018
Editura: Springer International Publishing
Colecția Springer
Seria Fields Institute Monographs
Locul publicării:Cham, Switzerland
Cuprins
Preface.- 1. Preliminaries.- 2. Trajectory dynamical systems and their attractors.- 3. Symmetry and attractors: the case N ≤ 3.- 4. Symmetry and attractors: the case N ≤ 4.- 5. Symmetry and attractors.- 6. Symmetry and attractors: arbitrary dimension.- 7. The case of p-Laplacian operator.- Bibliography.
Recenzii
“The author does a very good job with the difficult and somewhat unexpected task of pairing together elliptic PDE’s with dynamical systems methods specific to finite dimensions.” (Florin Catrina, zbMATH 1445.35005, 2020)
Textul de pe ultima copertă
This book deals with a systematic study of a dynamical system approach to investigate the symmetrization and stabilization properties of nonnegative solutions of nonlinear elliptic problems in asymptotically symmetric unbounded domains. The usage of infinite dimensional dynamical systems methods for elliptic problems in unbounded domains as well as finite dimensional reduction of their dynamics requires new ideas and tools. To this end, both a trajectory dynamical systems approach and new Liouville type results for the solutions of some class of elliptic equations are used. The work also uses symmetry and monotonicity results for nonnegative solutions in order to characterize an asymptotic profile of solutions and compares a pure elliptic partial differential equations approach and a dynamical systems approach. The new results obtained will be particularly useful for mathematical biologists.
Caracteristici
Contains new Liouville type results Compares two different approaches Characterizes asymptotics profile of solutions