Systems Biology: Constraint-based Reconstruction and Analysis
Autor Bernhard Ø. Palssonen Limba Engleză Hardback – 25 ian 2015
Toate formatele și edițiile | Preț | Express |
---|---|---|
Hardback (3) | 425.51 lei 3-5 săpt. | +50.52 lei 4-10 zile |
Cambridge University Press – 25 ian 2015 | 425.51 lei 3-5 săpt. | +50.52 lei 4-10 zile |
Cambridge University Press – 15 ian 2006 | 542.57 lei 6-8 săpt. | |
Cambridge University Press – 25 mai 2011 | 545.23 lei 6-8 săpt. |
Preț: 425.51 lei
Preț vechi: 447.91 lei
-5% Nou
81.43€ • 84.84$ • 67.71£
Carte disponibilă
Livrare economică 20 ianuarie-03 februarie 25
Livrare express 03-09 ianuarie 25 pentru 60.51 lei
Specificații
ISBN-10: 1107038855
Pagini: 550
Ilustrații: 27 b/w illus. 244 colour illus. 45 tables
Dimensiuni: 182 x 255 x 28 mm
Greutate: 1.25 kg
Ediția:1. Auflage. Revised.
Editura: Cambridge University Press
Colecția Cambridge University Press
Locul publicării:New York, United States
Cuprins
Preface; 1. Introduction; Part I. Network Reconstruction: 2. Network reconstruction: the concept; 3. Network reconstruction: the process; 4. Metabolism in Escherichia coli; 5. Prokaryotes; 6. Eukaryotes; 7. Biochemical reaction networks; 8. Metastructures of genomes; Part II. Mathematical Properties of Reconstructed Networks: 9. The stoichiometric matrix; 10. Simple topological network properties; 11. Fundamental network properties; 12. Pathways; 13. Use of pathway vectors; 14. Randomized sampling; Part III. Determining the Phenotypic Potential of Reconstructed Networks: 15. Dual causality; 16. Functional states; 17. Constraints; 18. Optimization; 19. Determining capabilities; 20. Equivalent states; 21. Distal causation; Part IV. Basic and Applied Uses: 22. Environmental parameters; 23. Genetic parameters; 24. Analysis of omic data; 25. Model driven discovery; 26. Adaptive laboratory evolution; 27. Model driven design; Part V. Conceptual Foundations: 28. Teaching systems biology; 29. Epilogue; References; Index.
Recenzii
'This is a real tour de force. With enormous clarity, Bernhard Ø. Palsson sets out the what, why and how of network and systems biology, and of the important role of genome-wide reconstructions - especially, to date, of metabolism - in realising it … this is a masterful survey of the field by one of its leading practitioners. The development is nicely logical … If you are interested in network biology at all, then this book is for you.' Douglas Kell, University of Manchester
'Systems Biology is an excellent resource for familiarizing researchers and students with the process of reconstructing genome-scale metabolic models and the types of data needed. A number of thorough studies are included that shed light on a range of queries that genome-scale models are well suited to answer. In addition to models, a number of algorithmic techniques are described for analyzing models and inferring organizational principles of metabolism or ways to re-engineer them. A great teaching and reference resource!' Costas Maranas, Pennsylvania State University
'… a very important and novel contribution to the systems biology literature. The field of systems biology is still in the phase of being defined as an independent field with a clear curriculum, but Palsson gives his very clear contributions to this. His definition of the paradigm of systems biology as components, networks, computer models and physiology is clearly explained and linked to educational modules, educational values and specific prerequisites. Thus, not only is he providing a fantastic novel textbook that enables teaching about network reconstruction and analysis, but he is also clearly defining this as the core of systems biology. I am therefore confident that the very well thought through structure of this textbook, where the reader is introduced to the different layers of network reconstruction and analysis, will be widely used for teaching systems biology worldwide.' Jens Nielsen, Chalmers University of Technology
'Bernhard Ø. Palsson is the leading pioneer of genome-scale models in biology today, and this book provides a beautiful view into his unique and powerful brand of systems biology. What lies in these pages is a masterful synthesis of a cohesive mathematical framework for representing biological processes that ties directly to experimental biology. While centered on metabolism - the powerhouse of the cell - this book teaches approaches that can be universally applied across all biochemical processes. This book will be a tremendous resource for students and researchers alike, and will help drive applications ranging from the environment to human health.' Nathan Price, Institute for Systems Biology
Descriere
Recent technological advances have enabled comprehensive determination of the molecular composition of living cells. The chemical interactions between many of these molecules are known, giving rise to genome-scale reconstructed biochemical reaction networks underlying cellular functions. Mathematical descriptions of the totality of these chemical interactions lead to genome-scale models that allow the computation of physiological functions. Reflecting these recent developments, this textbook explains how such quantitative and computable genotype-phenotype relationships are built using a genome-wide basis of information about the gene portfolio of a target organism. It describes how biological knowledge is assembled to reconstruct biochemical reaction networks, the formulation of computational models of biological functions, and how these models can be used to address key biological questions and enable predictive biology. Developed through extensive classroom use, the book is designed to provide students with a solid conceptual framework and an invaluable set of modeling tools and computational approaches.