Text Mining: Concepts, Implementation, and Big Data Challenge: Studies in Big Data, cartea 45
Autor Taeho Joen Limba Engleză Hardback – 20 iun 2018
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 1003.24 lei 6-8 săpt. | |
Springer International Publishing – 14 feb 2019 | 1003.24 lei 6-8 săpt. | |
Hardback (1) | 1009.40 lei 3-5 săpt. | |
Springer International Publishing – 20 iun 2018 | 1009.40 lei 3-5 săpt. |
Din seria Studies in Big Data
- 20% Preț: 861.36 lei
- 20% Preț: 997.75 lei
- 20% Preț: 586.43 lei
- 18% Preț: 993.91 lei
- 20% Preț: 1165.69 lei
- 20% Preț: 980.88 lei
- 20% Preț: 1440.41 lei
- 20% Preț: 1159.89 lei
- 20% Preț: 1470.90 lei
- 20% Preț: 1178.88 lei
- 20% Preț: 1170.62 lei
- 20% Preț: 1158.26 lei
- 20% Preț: 999.02 lei
- 20% Preț: 926.47 lei
- 20% Preț: 988.32 lei
- 15% Preț: 636.80 lei
- 20% Preț: 650.92 lei
- 20% Preț: 655.85 lei
- 20% Preț: 924.33 lei
- 20% Preț: 1041.76 lei
- 20% Preț: 1439.10 lei
- 18% Preț: 722.89 lei
- 20% Preț: 1048.78 lei
- 20% Preț: 1160.55 lei
- 20% Preț: 921.85 lei
- 20% Preț: 1624.52 lei
- 20% Preț: 333.88 lei
- 20% Preț: 1039.79 lei
- 20% Preț: 989.79 lei
- 20% Preț: 1017.46 lei
- 20% Preț: 987.82 lei
- 20% Preț: 650.27 lei
Preț: 1009.40 lei
Preț vechi: 1230.97 lei
-18% Nou
Puncte Express: 1514
Preț estimativ în valută:
193.15€ • 202.08$ • 160.45£
193.15€ • 202.08$ • 160.45£
Carte disponibilă
Livrare economică 13-27 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783319918143
ISBN-10: 3319918141
Pagini: 346
Ilustrații: XIII, 373 p. 236 illus., 148 illus. in color.
Dimensiuni: 155 x 235 x 24 mm
Greutate: 0.72 kg
Ediția:1st ed. 2019
Editura: Springer International Publishing
Colecția Springer
Seria Studies in Big Data
Locul publicării:Cham, Switzerland
ISBN-10: 3319918141
Pagini: 346
Ilustrații: XIII, 373 p. 236 illus., 148 illus. in color.
Dimensiuni: 155 x 235 x 24 mm
Greutate: 0.72 kg
Ediția:1st ed. 2019
Editura: Springer International Publishing
Colecția Springer
Seria Studies in Big Data
Locul publicării:Cham, Switzerland
Cuprins
Part I: Foundation.- Introduction.- Text Indexing.- Text Encoding.- Text Association.- Part II: Text Categorization.- Text Categorization: Conceptual View.- Text Categorization: Approaches.- Text Categorization: Implementation.- Text Categorization: Evaluation.- Part III: Text Clustering.- Text Clustering: Conceptual View.- Text Clustering: Approaches.- Text Clustering: Implementation.- Text Clustering: Evaluation.- Part IV: Advanced Topics.- Text Summarization.- Text Segmentation.- Taxonomy Generation.- Dynamic Document Organization.- References.- Index.
Notă biografică
Dr. Taeho Jo works as a faculty member for school of game in Hongik University, South Korea. He received his PhD from University of Ottawa in 2006. His research spans text mining, neural networks, machine learning, and information retrieval. He has four years’ experience working for industrial organizations and ten years’ experience working for in academia. He has published almost 150 research papers, and he was awarded two times in the world wide biography dictionary, “Marquis Who’s Who in the World”.
Textul de pe ultima copertă
This book discusses text mining and different ways this type of data mining can be used to find implicit knowledge from text collections. The author provides the guidelines for implementing text mining systems in Java, as well as concepts and approaches. The book starts by providing detailed text preprocessing techniques and then goes on to provide concepts, the techniques, the implementation, and the evaluation of text categorization. It then goes into more advanced topics including text summarization, text segmentation, topic mapping, and automatic text management.
- Presents techniques of preprocessing texts into structured forms;
- Outlines concepts of text categorization and clustering, their algorithms, and implementation guides;
- Includes advanced topics such as text summarization, text segmentation, topic mapping, and automatic text management.
Caracteristici
Presents techniques of preprocessing texts into structured forms Outlines concepts of text categorization and clustering, their algorithms, and implementation guides Includes advanced topics such as text summarization, text segmentation, topic mapping, and automatic text management