Cantitate/Preț
Produs

The Analysis of Sports Forecasting: Modeling Parallels between Sports Gambling and Financial Markets

Autor William S. Mallios
en Limba Engleză Hardback – 31 dec 1999
Given the magnitude of currency speculation and sports gambling, it is surprising that the literature contains mostly negative forecasting results. Majority opinion still holds that short term fluctuations in financial markets follow random walk. In this non-random walk through financial and sports gambling markets, parallels are drawn between modeling short term currency movements and modeling outcomes of athletic encounters. The forecasting concepts and methodologies are identical; only the variables change names. If, in fact, these markets are driven by mechanisms of non-random walk, there must be some explanation for the negative forecasting results. The Analysis of Sports Forecasting: Modeling Parallels Between Sports Gambling and Financial Markets examines this issue.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 89800 lei  6-8 săpt.
  Springer Us – 3 dec 2010 89800 lei  6-8 săpt.
Hardback (1) 90427 lei  6-8 săpt.
  Springer Us – 31 dec 1999 90427 lei  6-8 săpt.

Preț: 90427 lei

Preț vechi: 110276 lei
-18% Nou

Puncte Express: 1356

Preț estimativ în valută:
17309 18611$ 14430£

Carte tipărită la comandă

Livrare economică 20 decembrie 24 - 03 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780792377139
ISBN-10: 0792377133
Pagini: 294
Ilustrații: XVIII, 294 p.
Dimensiuni: 155 x 235 x 23 mm
Greutate: 0.64 kg
Ediția:2000
Editura: Springer Us
Colecția Springer
Locul publicării:New York, NY, United States

Public țintă

Research

Cuprins

Introduction: A Variety of Betting Lines.- I Models, Moralities, and Misconceptions.- II Modeling Concepts.- III Football.- IV Basketball.- V Baseball.- VI Selection of Athletes.- VII Financial Markets.- A.1 Time Series Analysis: Overview of Arma, Bilinear, and Higher Order Models.- A.1.1 Preliminary Comments.- A.1.2 Overview of Autoregressive Moving Average (ARMA) Models.- A.1.3 Overview of Bilinear Models.- A.1.4 Approaches to Modeling Heteroskedasticity Through Time Varying Coefficients.- A.1.5 Autoregressive Conditional Heteroskedasticity.- A.1.6 Generalized Autoregressive Conditional Heteroskedasticity.- A.1.7 ARMA Models with GARCH Errors.- A.1.8 Model Misspecification.- A.1.9 Least Squares Estimation for Non-Varying Coefficients.- A.1.10 Empirical Bayes Estimation for Time Varying Coefficients.- A.2 Multiple Time Series Equations.- A.2.1 Models Based on Wold’s Decomposition Theorem.- A.2.2 Multiple, Higher-Order Systems of Time Series Equations.- A.2.3 Extensions to Rational Expectations.- A.2.4 Classification of Events According to Observed Outcomes and States of Nature in Currency Markets.- A.3 Quantification of Structural Effects in Regression Systems.- A.3.1 Preliminary Comments.- A.3.2 Structural and Reduced Systems: Exploratory Models and Assumptions.- A.3.3 Increasing Efficiency Through Restricted Systems: Adjustments for Intra Sample Biases.- A.3.4 Estimation in Structural Systems.- A.3.5 Examples of Model Ambiguity in Structural Systems.- A.3.6 Structural Experimental Design Reconsidered.