The Ball and Some Hilbert Problems: Lectures in Mathematics. ETH Zürich
Autor Rolf-Peter Holzapfelen Limba Engleză Paperback – dec 1994
Din seria Lectures in Mathematics. ETH Zürich
- Preț: 319.43 lei
- Preț: 453.98 lei
- Preț: 482.56 lei
- Preț: 348.77 lei
- Preț: 379.30 lei
- Preț: 383.93 lei
- Preț: 378.71 lei
- 15% Preț: 492.73 lei
- Preț: 385.84 lei
- Preț: 381.98 lei
- Preț: 381.21 lei
- Preț: 345.12 lei
- Preț: 381.43 lei
- 18% Preț: 735.84 lei
- 15% Preț: 491.75 lei
- Preț: 414.80 lei
- Preț: 395.25 lei
- Preț: 345.45 lei
- Preț: 447.03 lei
- 15% Preț: 493.37 lei
- Preț: 380.45 lei
- Preț: 350.24 lei
- Preț: 347.15 lei
- Preț: 383.71 lei
- Preț: 447.62 lei
- Preț: 381.98 lei
- 18% Preț: 907.11 lei
Preț: 382.36 lei
Nou
Puncte Express: 574
Preț estimativ în valută:
73.16€ • 76.59$ • 60.54£
73.16€ • 76.59$ • 60.54£
Carte tipărită la comandă
Livrare economică 05-19 aprilie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783764328351
ISBN-10: 3764328355
Pagini: 172
Ilustrații: 160 p. 3 illus.
Dimensiuni: 170 x 244 x 9 mm
Greutate: 0.28 kg
Ediția:1995
Editura: Birkhäuser Basel
Colecția Birkhäuser
Seria Lectures in Mathematics. ETH Zürich
Locul publicării:Basel, Switzerland
ISBN-10: 3764328355
Pagini: 172
Ilustrații: 160 p. 3 illus.
Dimensiuni: 170 x 244 x 9 mm
Greutate: 0.28 kg
Ediția:1995
Editura: Birkhäuser Basel
Colecția Birkhäuser
Seria Lectures in Mathematics. ETH Zürich
Locul publicării:Basel, Switzerland
Public țintă
ResearchCuprins
Preface.- 1 Elliptic Curves, the Finiteness Theorem of Shafarevi?.- 1.1 Elliptic Curves over ?.- 1.2 Elliptic Curves over Arbitrary Fields.- 2 Picard Curves.- 2.1 The Moduli Space of Picard Curves.- 2.2The Relative Schottky Problem for Picard Curves.- 2.3 Typical Period Matrices.- 2.4 Metrization.- 2.5 Arithmetization.- 2.6 A Retrospect to Elliptic Curves.- 2.7 Rough Solution of the Relative Schottky Problem for Picard Curves.- 3 Uniformizations and Differential Equations of Euler-Picard Type.- 3.1 Ball Uniformization of Algebraic Surfaces.- 3.2 Special Fuchsian Systems and Gauss-Manin Connection.- 3.3 Picard Modular Forms.- 3.4 Picard Modular Forms as Theta Constants.- 4 Algebraic Values of Picard Modular Theta Functions.- 4.1 Introduction.- 4.2 Complex Multiplication on Abelian Varieties.- 4.3 Types of Complex Multiplication.- 4.4 Transformation of Constants.- 4.5 Shimura Class Fields.- 4.6 Moduli Fields.- 4.7 The Main Theorem of Complex Multiplication.- 4.8 Shimura Class Fields by Special Values.- 4.9 Special Points on Shimura Varieties of $$\mathbb{U}$$(2,1).- 5 Transcendental Values of Picard Modular Theta Constants.- 5.1 Transcendence at Non-Singular Simple Algebraic Moduli.- 5.2 Transcendence at Non-Singular Non-Simple Algebraic Moduli.- 5.3 Some More History.- 6 Arithmetic Surfaces of Kodaira-Picard Type and some Diophantine Equations.- 6.1 Introduction.- 6.2 Arithmetic Surfaces and Curves of Kodaira-Picard Type.- 6.3 Heights.- 6.4 Conjectures of Vojta and Parshin’s Problem.- 6.5 Kummer Maps.- 6.6 Proof of the Main Implication.- 7 Appendix I A Finiteness Theorem for Picard Curves with Good Reduction.- 7.1 Some Definitions and Known Results.- 7.2 Affine Models of n-gonal Cyclic Curves.- 7.3 Normal Forms of Picard Curves.- 7.4 Conditions for Smoothness.- 7.5Projective Isomorphism Classification in Characteristic > 3.- 7.6 Minimal Normal Forms for Picard Curves.- 7.7 Good Reduction of Picard Curves.- 8 Appendix II The Hilbert Problems 7, 12, 21 and 22.- 8.1 Irrationality and Transcendence of Certain Numbers.- 8.2 Extension of Kronecker’s Theorem on Abelian Fields.- 8.3 Proof of the Existence of Linear Differential Equations Having a Prescribed Monodromic Group.- 8.4 Uniformization of Analytic Relations by Means of Automorphic Functions.- Basic Notations.