Cantitate/Preț
Produs

Constant Mean Curvature Surfaces, Harmonic Maps and Integrable Systems: Lectures in Mathematics. ETH Zürich

Autor Frederic Hélein Note de R. Moser
en Limba Engleză Paperback – iun 2001
This title provides and introduction to harmonic maps between a surface and a symmetric manifold and constant mean curvature surfaces as completely integrable systems. It should help the reader to access the ideas of the theory and to aquire a unified perspective of the subject.
Citește tot Restrânge

Din seria Lectures in Mathematics. ETH Zürich

Preț: 38121 lei

Nou

Puncte Express: 572

Preț estimativ în valută:
7295 7570$ 6098£

Carte tipărită la comandă

Livrare economică 15-29 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783764365769
ISBN-10: 3764365765
Pagini: 124
Ilustrații: 122 p.
Dimensiuni: 170 x 244 x 7 mm
Greutate: 0.25 kg
Ediția:2001
Editura: Birkhäuser Basel
Colecția Birkhäuser
Seria Lectures in Mathematics. ETH Zürich

Locul publicării:Basel, Switzerland

Public țintă

Research

Cuprins

1 Introduction: Surfaces with prescribed mean curvature.- 2 From minimal surfaces and CMC surfaces to harmonic maps.- 2.1 Minimal surfaces.- 2.2 Constant mean curvature surfaces.- 3 Variational point of view and Noether’s theorem.- 4 Working with the Hopf differential.- 4.1 Appendix.- 5 The Gauss-Codazzi condition.- 5.1 Appendix.- 6 Elementary twistor theory for harmonic maps.- 6.1 Appendix.- 7 Harmonic maps as an integrable system.- 7.1 Maps into spheres.- 7.2 Generalizations.- 7.3 A new setting: loop groups.- 7.4 Examples.- 8 Construction of finite type solutions.- 8.1 Preliminary: the Iwasawa decomposition (for)..- 8.2 Application to loop Lie algebras.- 8.3 The algorithm.- 8.4 Some further properties of finite type solutions.- 9 Constant mean curvature tori are of finite type.- 9.1 The result.- 9.2 Appendix.- 10 Wente tori.- 10.1 CMC surfaces with planar curvature lines.- 10.2 A system of commuting ordinary equations.- 10.3 Recovering a finite type solution.- 10.4 Spectral curves.- 11 Weierstrass type representations.- 11.1 Loop groups decompositions.- 11.2 Solutions in terms of holomorphic data.- 11.3 Meromorphic potentials.- 11.4 Generalizations.