Cantitate/Preț
Produs

The Cell as a Machine: Cambridge Texts in Biomedical Engineering

Autor Michael Sheetz, Hanry Yu
en Limba Engleză Hardback – 10 ian 2018
This unique introductory text explains cell functions using the engineering principles of robust devices. Adopting a process-based approach to understanding cell and tissue biology, it describes the molecular and mechanical features that enable the cell to be robust in operating its various components, and explores the ways in which molecular modules respond to environmental signals to execute complex functions. The design and operation of a variety of complex functions are covered, including engineering lipid bilayers to provide fluid boundaries and mechanical controls, adjusting cell shape and forces with dynamic filament networks, and DNA packaging for information retrieval and propagation. Numerous problems, case studies and application examples help readers connect theory with practice, and solutions for instructors and videos of lectures accompany the book online. Assuming only basic mathematical knowledge, this is an invaluable resource for graduate and senior undergraduate students taking single-semester courses in cell mechanics, biophysics and cell biology.
Citește tot Restrânge

Din seria Cambridge Texts in Biomedical Engineering

Preț: 60358 lei

Preț vechi: 63534 lei
-5% Nou

Puncte Express: 905

Preț estimativ în valută:
11551 12149$ 9622£

Carte tipărită la comandă

Livrare economică 03-17 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9781107052734
ISBN-10: 1107052734
Pagini: 434
Ilustrații: 2 b/w illus. 136 colour illus.
Dimensiuni: 192 x 253 x 24 mm
Greutate: 1.1 kg
Editura: Cambridge University Press
Colecția Cambridge University Press
Seria Cambridge Texts in Biomedical Engineering

Locul publicării:New York, United States

Cuprins

Part I. Principle of Complex Function in Robust Machines: 1. Robust self-replicating machines shaped by evolution; 2. Complex functions of robust machines with emergent properties; 3. Integrated complex functions with dynamic feedback; 4. Cells exhibit multiple states, each with different functions; 5. Life at low Reynolds number and the mesoscale leads to stochastic phenomena; Part II. Design and Operation of Complex Functions: 6. Engineering lipid bilayers to provide fluid boundaries and mechanical controls; 7. Membrane trafficking – flow and barriers create asymmetries; 8. Signaling and cell volume control through ion transport and volume regulators; 9. Structuring a cell by cytoskeletal filaments; 10. Moving and maintaining functional assemblies with motors; 11. Microenvironment controls life, death and regeneration; 12. Adjusting cell shape and forces with dynamic filament networks; 13. DNA packaging for information retrieval and propagation; 14. Transcribing the right information and packaging for delivery; 15. Turning RNA into functional proteins and removing unwanted proteins; Part III. Coordination of Complex Functions: 16. How to approach a coordinated function – cell rigidity sensing and force generation across length scale; 17. Integration of cellular functions for decision making; 18. Moving from omnipotency to death; 19. Cancer versus regeneration – the wrong versus right response to the microenvironment.

Notă biografică


Descriere

A systematic and mathematically accessible introductory text explaining cell functions through the engineering principles of robust devices.