The Continuum: A Constructive Approach to Basic Concepts of Real Analysis
Autor Rudolf Taschneren Limba Engleză Paperback – 5 feb 2012
Preț: 309.55 lei
Nou
Puncte Express: 464
Preț estimativ în valută:
59.27€ • 61.72$ • 49.18£
59.27€ • 61.72$ • 49.18£
Carte tipărită la comandă
Livrare economică 14-28 februarie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783322820389
ISBN-10: 3322820386
Pagini: 152
Ilustrații: XI, 136 p. 8 illus.
Dimensiuni: 170 x 240 x 8 mm
Greutate: 0.25 kg
Ediția:2005
Editura: Vieweg+Teubner Verlag
Colecția Vieweg+Teubner Verlag
Locul publicării:Wiesbaden, Germany
ISBN-10: 3322820386
Pagini: 152
Ilustrații: XI, 136 p. 8 illus.
Dimensiuni: 170 x 240 x 8 mm
Greutate: 0.25 kg
Ediția:2005
Editura: Vieweg+Teubner Verlag
Colecția Vieweg+Teubner Verlag
Locul publicării:Wiesbaden, Germany
Public țintă
Upper undergraduateCuprins
1 Introduction and historical remarks.- 1.1 Farey fractions.- 1.2 The pentagram.- 1.3 Continued fractions.- 1.4 Special square roots.- 1.5 Dedekind cuts.- 1.6 Weyl’s alternative.- 1.7 Brouwer’s alternative.- 1.8 Integration in traditional and in intuitionistic framework.- 1.9 The wager.- 1.10 How to read the following pages.- 2 Real numbers.- 2.1 Definition of real numbers.- 2.2 Order relations.- 2.3 Equality and apartness.- 2.4 Convergent sequences of real numbers.- 3 Metric spaces.- 3.1 Metric spaces and complete metric spaces.- 3.2 Compact metric spaces.- 3.3 Topological concepts.- 3.4 The s-dimensional continuum.- 4 Continuous functions.- 4.1 Pointwise continuity.- 4.2 Uniform continuity.- 4.3 Elementary calculations in the continuum.- 4.4 Sequences and sets of continuous functions.- 5 Literature.
Notă biografică
Rudolf Taschner is Professor of Mathematics at the "Institute for Analysis and Scientific Computing", Technical University Vienna, Austria. In his recent book "Der Zahlen gigantische Schatten" (Vieweg 2004) he describes how intensively numbers penetrate the aspects of our life, and how far the "shadows of numbers" reach.
Textul de pe ultima copertă
In this small text the basic theory of the continuum, including the elements of metric space theory and continuity is developed within the system of intuitionistic mathematics in the sense of L.E.J. Brouwer and H. Weyl. The main features are proofs of the famous theorems of Brouwer concerning the continuity of all functions that are defined on "whole" intervals, the uniform continuity of all functions that are defined on compact intervals, and the uniform convergence of all pointwise converging sequences of functions defined on compact intervals. The constructive approach is interesting both in itself and as a contrast to, for example, the formal axiomatic one.
Caracteristici
A constructive approach to Real Analysis