Cantitate/Preț
Produs

The Geometry of Spherically Symmetric Finsler Manifolds: SpringerBriefs in Mathematics

Autor Enli Guo, Xiaohuan Mo
en Limba Engleză Paperback – 11 oct 2018
This book presents properties, examples, rigidity theorems and classification results of such Finsler metrics. In particular, this book introduces how to investigate spherically symmetric Finsler geometry using ODE or PDE methods. Spherically symmetric Finsler geometry is a subject that concerns domains in R^n with spherically symmetric metrics.
Recently, a significant progress has been made in studying Riemannian-Finsler geometry. However, constructing nice examples of Finsler metrics turn out to be very difficult. In spherically symmetric Finsler geometry, we find many nice examples with special curvature properties using PDE technique. The studying of spherically symmetric geometry shows closed relation among geometry, group and equation.
Citește tot Restrânge

Din seria SpringerBriefs in Mathematics

Preț: 42207 lei

Nou

Puncte Express: 633

Preț estimativ în valută:
8078 8420$ 6725£

Carte tipărită la comandă

Livrare economică 31 decembrie 24 - 06 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9789811315978
ISBN-10: 9811315973
Pagini: 138
Ilustrații: XIII, 154 p. 6 illus.
Dimensiuni: 155 x 235 x 9 mm
Greutate: 0.25 kg
Ediția:1st ed. 2018
Editura: Springer Nature Singapore
Colecția Springer
Seria SpringerBriefs in Mathematics

Locul publicării:Singapore, Singapore

Cuprins

Chapter 1. Spherically Symmetric Finsler Metrics.- Chapter 2. Dually Flat Spherically Symmetric Metrics.- Chapter 3. Spherically Symmetric Metrics of Isotropic Berwald Curvature.- Chapter 4. Spherically Symmetric Douglas Metrics.- Chapter 5. Projectively Flat Spherically Symmetric Metrics.- Chapter 6. Spherically Symmetric Metrics of Scalar Curvature.- Chapter 7. Spherically Symmetric Metrics of Constant Flag Curvature.- Chapter 8. Spherically Symmetric W-quadratic Metrics. 

Recenzii

“The exposition is very comprehensive for the reader and this certainly should become a good reference book for beginners in Finsler geometry.” (Libing Huang, Mathematical Reviews, August, 2019)

Caracteristici

Provides broader examples of Finsler metrics with nice curvature properties Establishes a lot of beautiful classification theorems Presents PDE method to study Riemann-Finsler geometry