Cantitate/Preț
Produs

The Geometry of Uncertainty: The Geometry of Imprecise Probabilities: Artificial Intelligence: Foundations, Theory, and Algorithms

Autor Fabio Cuzzolin
en Limba Engleză Paperback – 19 dec 2021
The principal aim of this book is to introduce to the widest possible audience an original view of belief calculus and uncertainty theory. In this geometric approach to uncertainty, uncertainty measures can be seen as points of a suitably complex geometric space, and manipulated in that space, for example, combined or conditioned. 
In the chapters in Part I, Theories of Uncertainty, the author offers an extensive recapitulation of the state of the art in the mathematics of uncertainty. This part of the book contains the most comprehensive summary to date of the whole of belief theory, with Chap. 4 outlining for the first time, and in a logical order, all the steps of the reasoning chain associated with modelling uncertainty using belief functions, in an attempt to provide a self-contained manual for the working scientist. In addition, the book proposes in Chap. 5 what is possibly the most detailed compendium available of all theories of uncertainty. Part II, The Geometry of Uncertainty, is the core of this book, as it introduces the author’s own geometric approach to uncertainty theory, starting with the geometry of belief functions: Chap. 7 studies the geometry of the space of belief functions, or belief space, both in terms of a simplex and in terms of its recursive bundle structure; Chap. 8 extends the analysis to Dempster’s rule of combination, introducing the notion of a conditional subspace and outlining a simple geometric construction for Dempster’s sum; Chap. 9 delves into the combinatorial properties of plausibility and commonality functions, as equivalent representations of the evidence carried by a belief function; then Chap. 10 starts extending the applicability of the geometric approach to other uncertainty measures, focusing in particular on possibility measures (consonant belief functions) and the related notion of a consistent belief function. The chapters in Part III, Geometric Interplays, are concerned with the interplay of uncertainty measures of different kinds, and the geometry of their relationship, with a particular focus on the approximation problem. Part IV, Geometric Reasoning, examines the application of the geometric approach to the various elements of the reasoning chain illustrated in Chap. 4, in particular conditioning and decision making. Part V concludes the book by outlining a future, complete statistical theory of random sets, future extensions of the geometric approach, and identifying high-impact applications to climate change, machine learning and artificial intelligence. 
The book is suitable for researchers in artificial intelligence, statistics, and applied science engaged with theories of uncertainty. The book is supported with the most comprehensive bibliography on belief and uncertainty theory.

Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 160854 lei  43-57 zile
  Springer International Publishing – 19 dec 2021 160854 lei  43-57 zile
Hardback (1) 161516 lei  43-57 zile
  Springer International Publishing – 18 dec 2020 161516 lei  43-57 zile

Din seria Artificial Intelligence: Foundations, Theory, and Algorithms

Preț: 160854 lei

Preț vechi: 201067 lei
-20% Nou

Puncte Express: 2413

Preț estimativ în valută:
30784 31977$ 25571£

Carte tipărită la comandă

Livrare economică 03-17 februarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783030631550
ISBN-10: 3030631559
Pagini: 850
Ilustrații: XXV, 850 p. 140 illus., 100 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 1.21 kg
Ediția:1st ed. 2021
Editura: Springer International Publishing
Colecția Springer
Seria Artificial Intelligence: Foundations, Theory, and Algorithms

Locul publicării:Cham, Switzerland

Cuprins

Introduction.- Part I: Theories of Uncertainty.- Belief Functions.- Understanding Belief Functions.- Reasoning with Belief Functions.- A Toolbox for the Working Scientist.- The Bigger Picture.- Part II: The Geometry of Uncertainty.- The Geometry of Belief Functions.- Geometry of Dempster's Rule.- Three Equivalent Models.- The Geometry of Possibility.- Part III: Geometry Interplays.- Probability Transforms: The Affine Family.- Probability Transforms: The Epistemic Family.- Consonant Approximation.- Consistent Approximation.- Part IV: Geometric Reasoning.- Geometric Conditioning.- Decision Making with Epistemic Transforms.- Part V The Future of Uncertainty.- An Agenda for the Future.- References.


Textul de pe ultima copertă

The principal aim of this book is to introduce to the widest possible audience an original view of belief calculus and uncertainty theory. In this geometric approach to uncertainty, uncertainty measures can be seen as points of a suitably complex geometric space, and manipulated in that space, for example, combined or conditioned. 

In the chapters in Part I, Theories of Uncertainty, the author offers an extensive recapitulation of the state of the art in the mathematics of uncertainty. This part of the book contains the most comprehensive summary to date of the whole of belief theory, with Chap. 4 outlining for the first time, and in a logical order, all the steps of the reasoning chain associated with modelling uncertainty using belief functions, in an attempt to provide a self-contained manual for the working scientist. In addition, the book proposes in Chap. 5 what is possibly the most detailed compendium available of all theories of uncertainty. Part II, TheGeometry of Uncertainty, is the core of this book, as it introduces the author’s own geometric approach to uncertainty theory, starting with the geometry of belief functions: Chap. 7 studies the geometry of the space of belief functions, or belief space, both in terms of a simplex and in terms of its recursive bundle structure; Chap. 8 extends the analysis to Dempster’s rule of combination, introducing the notion of a conditional subspace and outlining a simple geometric construction for Dempster’s sum; Chap. 9 delves into the combinatorial properties of plausibility and commonality functions, as equivalent representations of the evidence carried by a belief function; then Chap. 10 starts extending the applicability of the geometric approach to other uncertainty measures, focusing in particular on possibility measures (consonant belief functions) and the related notion of a consistent belief function. The chapters in Part III, Geometric Interplays, are concerned with the interplay ofuncertainty measures of different kinds, and the geometry of their relationship, with a particular focus on the approximation problem. Part IV, Geometric Reasoning, examines the application of the geometric approach to the various elements of the reasoning chain illustrated in Chap. 4, in particular conditioning and decision making. Part V concludes the book by outlining a future, complete statistical theory of random sets, future extensions of the geometric approach, and identifying high-impact applications to climate change, machine learning and artificial intelligence. 

The book is suitable for researchers in artificial intelligence, statistics, and applied science engaged with theories of uncertainty. The book is supported with the most comprehensive bibliography on belief and uncertainty theory.

Caracteristici

Introduce an original view of belief calculus and uncertainty theory Suitable for researchers in artificial intelligence, statistics, and applied science engaged with theories of uncertainty Supported with the most comprehensive bibliography on belief and uncertainty theory.