Cantitate/Preț
Produs

The Kalman Filter in Finance: Advanced Studies in Theoretical and Applied Econometrics, cartea 32

Autor C. Wells
en Limba Engleză Hardback – 30 noi 1995
A non-technical introduction to the question of modeling with time-varying parameters, using the beta coefficient from Financial Economics as the main example. After a brief introduction to this coefficient for those not versed in finance, the book presents a number of rather well known tests for constant coefficients and then performs these tests on data from the Stockholm Exchange. The Kalman filter is then introduced and a simple example is used to demonstrate the power of the filter. The filter is then used to estimate the market model with time-varying betas. The book concludes with further examples of how the Kalman filter may be used in estimation models used in analyzing other aspects of finance.
Since both the programs and the data used in the book are available for downloading, the book is especially valuable for students and other researchers interested in learning the art of modeling with time varying coefficients.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 63531 lei  6-8 săpt.
  SPRINGER NETHERLANDS – 5 dec 2010 63531 lei  6-8 săpt.
Hardback (1) 64218 lei  6-8 săpt.
  SPRINGER NETHERLANDS – 30 noi 1995 64218 lei  6-8 săpt.

Din seria Advanced Studies in Theoretical and Applied Econometrics

Preț: 64218 lei

Preț vechi: 75551 lei
-15% Nou

Puncte Express: 963

Preț estimativ în valută:
12290 12722$ 10388£

Carte tipărită la comandă

Livrare economică 05-19 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780792337713
ISBN-10: 0792337719
Pagini: 172
Ilustrații: XVI, 172 p.
Dimensiuni: 156 x 234 x 21 mm
Greutate: 0.47 kg
Ediția:1996
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Advanced Studies in Theoretical and Applied Econometrics

Locul publicării:Dordrecht, Netherlands

Public țintă

Research

Cuprins

1 Introduction.- 2 Tests for parameter stability.- 3 Flexible Least Squares.- 4 The Kalman filter.- 5 Parameter estimation.- 6 The estimates, reconsidered.- 7 Modeling with the Kalman filter.- A Tables of References.- A.1 Stability tests by partitioning data.- A.2 Tests for heteroscedasticity.- A.3 Models in the literature.- B The programs and the data.- B.1 Subroutines.- B.2 The main programs.- B.3 The data.