The Method of Newton’s Polyhedron in the Theory of Partial Differential Equations: Mathematics and its Applications, cartea 86
Autor S.G. Gindikin, L. Volevichen Limba Engleză Hardback – 30 noi 1992
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 380.89 lei 6-8 săpt. | |
SPRINGER NETHERLANDS – 27 sep 2012 | 380.89 lei 6-8 săpt. | |
Hardback (1) | 381.89 lei 17-23 zile | +35.84 lei 7-13 zile |
SPRINGER NETHERLANDS – 30 noi 1992 | 381.89 lei 17-23 zile | +35.84 lei 7-13 zile |
Din seria Mathematics and its Applications
- Preț: 475.19 lei
- Preț: 367.83 lei
- Preț: 427.88 lei
- 23% Preț: 321.52 lei
- 20% Preț: 365.03 lei
- Preț: 425.25 lei
- 22% Preț: 321.53 lei
- Preț: 428.09 lei
- 15% Preț: 451.43 lei
- Preț: 420.55 lei
- 12% Preț: 351.91 lei
- 22% Preț: 333.11 lei
- Preț: 356.63 lei
- 18% Preț: 1106.41 lei
- Preț: 386.40 lei
- 15% Preț: 640.69 lei
- 15% Preț: 632.01 lei
- 15% Preț: 636.69 lei
- 15% Preț: 636.69 lei
- Preț: 382.98 lei
- Preț: 387.51 lei
- 15% Preț: 641.19 lei
- 20% Preț: 640.59 lei
- 15% Preț: 639.24 lei
- Preț: 375.96 lei
- Preț: 386.40 lei
- 15% Preț: 646.32 lei
- 15% Preț: 647.28 lei
- Preț: 387.69 lei
Preț: 381.89 lei
Nou
Puncte Express: 573
Preț estimativ în valută:
73.12€ • 76.14$ • 60.67£
73.12€ • 76.14$ • 60.67£
Carte disponibilă
Livrare economică 21-27 ianuarie
Livrare express 11-17 ianuarie pentru 45.83 lei
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780792320371
ISBN-10: 0792320379
Pagini: 266
Ilustrații: X, 266 p.
Dimensiuni: 155 x 235 x 22 mm
Greutate: 0.58 kg
Ediția:1992
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Mathematics and its Applications
Locul publicării:Dordrecht, Netherlands
ISBN-10: 0792320379
Pagini: 266
Ilustrații: X, 266 p.
Dimensiuni: 155 x 235 x 22 mm
Greutate: 0.58 kg
Ediția:1992
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Mathematics and its Applications
Locul publicării:Dordrecht, Netherlands
Public țintă
ResearchCuprins
1. Two-sided estimates for polynomials related to Newton’s polygon and their application to studying local properties of partial differential operators in two variables.- §1. Newton’s polygon of a polynomial in two variables.- §2. Polynomials admitting of two-sided estimates.- §3. N Quasi-elliptic polynomials in two variables.- §4. N Quasi-elliptic differential operators.- Appendix to §4.- 2. Parabolic operators associated with Newton’s polygon.- §1. Polynomials correct in Petrovski?’s sense.- §2. Two-sided estimates for polynomials in two variables satisfying Petrovski?’s condition. N-parabolic polynomials.- §3. Cauchy’s problem for N-stable correct and N-parabolic differential operators in the case of one spatial variable.- §4. Stable-correct and parabolic polynomials in several variables.- §5. Cauchy’s problem for stable-correct differential operators with variable coefficients.- 3. Dominantly correct operators.- §1. Strictly hyperbolic operators.- §2. Dominantly correct polynomials in two variables.- §3. Dominantly correct differential operators with variable coefficients (the case of two variables).- §4. Dominantly correct polynomials and the corresponding differential operators (the case of several spatial variables).- 4. Operators of principal type associated with Newton’s polygon.- §1. Introduction. Operators of principal and quasi-principal type.- §2. Polynomials of N-principal type.- §3. The main L2 estimate for operators of N-principal type.- Appendix to §3.- §4. Local solvability of differential operators of N-principal type.- Appendix to §4.- 5. Two-sided estimates in several variables relating to Newton’s polyhedra.- §1. Estimates for polynomials in ?n relating to Newton’s polyhedra.- §2. Two-sided estimates insome regions in ?n relating to Newton’s polyhedron. Special classes of polynomials and differential operators in several variables.- 6. Operators of principal type associated with Newton’s polyhedron.- §1. Polynomials of N-principal type.- §2. Estimates for polynomials of N-principal type in regions of special form.- §3. The covering of ?n by special regions associated with Newton’s polyhedron.- §4. Differential operators of ?n-principal type with variable coefficients.- Appendix to §4.- 7. The method of energy estimates in Cauchy’s problem §1. Introduction. The functional scheme of the proof of the solvability of Cauchy’s problem.- §2. Sufficient conditions for the existence of energy estimates.- §3. An analysis of conditions for the existence of energy estimates.- §4. Cauchy’s problem for dominantly correct differential operators.- References.