The NIPS '17 Competition: Building Intelligent Systems: The Springer Series on Challenges in Machine Learning
Editat de Sergio Escalera, Markus Weimeren Limba Engleză Hardback – 28 sep 2018
Rigorous competition evaluation was based on the quality of data, problem interest and impact, promoting the design of new models, and a proper schedule and management procedure. This book contains the chapters from organizers on competition design and from top-ranked participants on their proposed solutions for the five accepted competitions: The Conversational Intelligence Challenge, Classifying Clinically Actionable Genetic Mutations, Learning to Run, Human-Computer Question Answering Competition, and Adversarial Attacks and Defenses.
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 313.01 lei 39-44 zile | |
Springer International Publishing – 13 dec 2018 | 313.01 lei 39-44 zile | |
Hardback (1) | 326.08 lei 6-8 săpt. | |
Springer International Publishing – 28 sep 2018 | 326.08 lei 6-8 săpt. |
Preț: 326.08 lei
Preț vechi: 407.60 lei
-20% Nou
Puncte Express: 489
Preț estimativ în valută:
62.41€ • 65.84$ • 52.01£
62.41€ • 65.84$ • 52.01£
Carte tipărită la comandă
Livrare economică 02-16 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783319940410
ISBN-10: 3319940414
Pagini: 242
Ilustrații: X, 287 p. 85 illus.
Dimensiuni: 155 x 235 mm
Greutate: 0.59 kg
Ediția:1st ed. 2018
Editura: Springer International Publishing
Colecția Springer
Seria The Springer Series on Challenges in Machine Learning
Locul publicării:Cham, Switzerland
ISBN-10: 3319940414
Pagini: 242
Ilustrații: X, 287 p. 85 illus.
Dimensiuni: 155 x 235 mm
Greutate: 0.59 kg
Ediția:1st ed. 2018
Editura: Springer International Publishing
Colecția Springer
Seria The Springer Series on Challenges in Machine Learning
Locul publicării:Cham, Switzerland
Caracteristici
Offers new challenges and methods on reinforcement learning and deep reinforcement learning applied to human body motion and intelligent conversational settings Discusses machine learning methods for classifying clinically actionable genetic mutations Provides challenges and methods on adversarial learning applied to attacks and defenses Presents deep learning applied to transfer knowledge in art