Cantitate/Preț
Produs

The Quantization of Gravity: Fundamental Theories of Physics, cartea 194

Autor Claus Gerhardt
en Limba Engleză Hardback – 18 apr 2018
​A unified quantum theory incorporating the four fundamental forces of nature is one of the major open problems in physics. The Standard Model combines electro-magnetism, the strong force and the weak force, but ignores gravity. The quantization of gravity is therefore a necessary first step to achieve a unified quantum theory. In this monograph a canonical quantization of gravity has been achieved by quantizing a geometric evolution equation resulting in a gravitational wave equation in a globally hyperbolic spacetime. Applying the technique of separation of variables we obtain eigenvalue problems for temporal and spatial self-adjoint operators where the temporal operator has a pure point spectrum with eigenvalues $\lambda_i$ and related eigenfunctions, while, for the spatial operator, it is possible to find corresponding eigendistributions  for each of the eigenvalues $\lambda_i$, if the Cauchy hypersurface is asymptotically Euclidean or if the quantized spacetime is a black hole with a negative cosmological constant. The hyperbolic equation then has a sequence of smooth solutions which are  products of temporal eigenfunctions and spatial eigendistributions. Due to this "spectral resolution" of the wave equation quantum statistics can also be applied to the quantized systems. These quantum statistical results could help to explain the nature of dark matter and dark energy.  

Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 70250 lei  3-5 săpt.
  Springer International Publishing – 19 dec 2018 70250 lei  3-5 săpt.
Hardback (1) 70786 lei  6-8 săpt.
  Springer International Publishing – 18 apr 2018 70786 lei  6-8 săpt.

Din seria Fundamental Theories of Physics

Preț: 70786 lei

Preț vechi: 86324 lei
-18% Nou

Puncte Express: 1062

Preț estimativ în valută:
13548 14121$ 11278£

Carte tipărită la comandă

Livrare economică 06-20 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783319773704
ISBN-10: 3319773704
Pagini: 200
Ilustrații: XII, 200 p.
Dimensiuni: 155 x 235 mm
Greutate: 0.48 kg
Ediția:1st ed. 2018
Editura: Springer International Publishing
Colecția Springer
Seria Fundamental Theories of Physics

Locul publicării:Cham, Switzerland

Cuprins

The quantization of a globally hyperbolic spacetime.- Interaction of gravity with Yang-Mills and Higgs fields.- The quantum development of an asymptotically Euclidean Cauchy hypersurface.- The quantization of a Schwarzschild-AdS black hole.- The quantization of a Kerr-AdS black hole.- A partition function for quantized globally hyperbolic spacetimes with a negative cosmological constant.- Appendix.

Recenzii

“This is an interesting as well as an important book. … The book is, of course, well written, elegant, and well balanced. … for anyone doing research in quantizing gravity, the procedure and framework offered by this book will provide a wider and more complete perspective on the challenge. In other words, this should become a textbook or a cited reference for consultation in any advanced course where quantum gravity is one of the main topics.” (Paulo Moniz, Mathematical Reviews, July, 2019)

Notă biografică

Claus Gerhardt is a professor of mathematics at the University of Heidelberg. His research areas are partial differential equations, differential geometry and general relativity. He is especially interested in geometric evolution equations in Riemannian or Lorentzian manifolds and in applying these geometric ideas and techniques to open problems in mathematics and physics.

Textul de pe ultima copertă

​A unified quantum theory incorporating the four fundamental forces of nature is one of the major open problems in physics. The Standard Model combines electro-magnetism, the strong force and the weak force, but ignores gravity. The quantization of gravity is therefore a necessary first step to achieve a unified quantum theory. In this monograph a canonical quantization of gravity has been achieved by quantizing a geometric evolution equation resulting in a gravitational wave equation in a globally hyperbolic spacetime. Applying the technique of separation of variables we obtain eigenvalue problems for temporal and spatial self-adjoint operators where the temporal operator has a pure point spectrum with eigenvalues $\lambda_i$ and related eigenfunctions, while, for the spatial operator, it is possible to find corresponding eigendistributions  for each of the eigenvalues $\lambda_i$, if the Cauchy hypersurface is asymptotically Euclidean or if the quantized spacetime is a black hole with a negative cosmological constant. The hyperbolic equation then has a sequence of smooth solutions which are  products of temporal eigenfunctions and spatial eigendistributions. Due to this "spectral resolution" of the wave equation quantum statistics can also be applied to the quantized systems. These quantum statistical results could help to explain the nature of dark matter and dark energy.  


Caracteristici

Presents the first compelling model for quantum gravity Offers a concise and comprehensive treatise Can be understood with a graduate level knowledge of mathematics