Cantitate/Preț
Produs

The Volume of Convex Bodies and Banach Space Geometry: Cambridge Tracts in Mathematics, cartea 94

Autor Gilles Pisier
en Limba Engleză Paperback – 26 mai 1999
This book aims to give a self-contained presentation of a number of results, which relate the volume of convex bodies in n-dimensional Euclidean space and the geometry of the corresponding finite-dimensional normed spaces. The methods employ classical ideas from the theory of convex sets, probability theory, approximation theory and the local theory of Banach spaces. The book is in two parts. The first presents self-contained proofs of the quotient of the subspace theorem, the inverse Santalo inequality and the inverse Brunn-Minkowski inequality. The second part gives a detailed exposition of the recently introduced classes of Banach spaces of weak cotype 2 or weak type 2, and the intersection of the classes (weak Hilbert space). The book is based on courses given in Paris and in Texas.
Citește tot Restrânge

Din seria Cambridge Tracts in Mathematics

Preț: 46077 lei

Nou

Puncte Express: 691

Preț estimativ în valută:
8821 9077$ 7436£

Carte tipărită la comandă

Livrare economică 28 februarie-14 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780521666350
ISBN-10: 052166635X
Pagini: 268
Dimensiuni: 153 x 228 x 16 mm
Greutate: 0.39 kg
Ediția:Revised
Editura: Cambridge University Press
Colecția Cambridge University Press
Seria Cambridge Tracts in Mathematics

Locul publicării:Cambridge, United Kingdom

Cuprins

Introduction; 1. Notation and preliminary background; 2. Gaussian variables. K-convexity; 3. Ellipsoids; 4. Dvoretzky's theorem; 5. Entropy, approximation numbers, and Gaussian processes; 6. Volume ratio; 7. Milman's ellipsoids; 8. Another proof of the QS theorem; 9. Volume numbers; 10. Weak cotype 2; 11. Weak type 2; 12. Weak Hilbert spaces; 13. Some examples: the Tsirelson spaces; 14. Reflexivity of weak Hilbert spaces; 15. Fredholm determinants; Final remarks; Bibliography; Index.

Descriere

A self-contained presentation of results relating the volume of convex bodies and Banach space geometry.