Cantitate/Preț
Produs

Theoretische Elektrotechnik: Netzwerke und Elemente höherer Ordnung: VDI-Buch

Autor Roland Süße, Ute Diemar, Georg Michel
de Limba Germană Paperback – 16 feb 2012
Das Werk gliedert sich in die Kapitel: Anwendungen in Elektrotechnik, Elektronik und Elektromechanik; Lagrange- und Hamiltonformalismus; Elemente höherer Ordnung und ihre Anwendung; Berechnung und Modellierungselektrischer bzw. elektromechanischer Systeme. Die Anwendungen sind auf Ingenieure abgestimmt. Es werden Kenntnisse vorausgesetzt, wie sie das Grundstudium an einer Technischen Universität oder Hochschule in Mathematik, Physik, Elektrotechnik und Elektronik anbietet.
Citește tot Restrânge

Din seria VDI-Buch

Preț: 34220 lei

Nou

Puncte Express: 513

Preț estimativ în valută:
6549 6909$ 5458£

Carte tipărită la comandă

Livrare economică 02-16 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783642957642
ISBN-10: 3642957641
Pagini: 268
Ilustrații: XIV, 250 S.
Dimensiuni: 170 x 244 x 14 mm
Greutate: 0.43 kg
Ediția:Softcover reprint of the original 1st ed. 1996
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria VDI-Buch

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Graduate

Cuprins

1 Einleitung.- 1.1 Wirkungsintegral, Euler-Lagrange-Gleichung und Hamilton-Funktion.- 1.2 Anwendungen aus Elektrotechnik-Elektronik und Elektromechanik.- 2 Prinzipien in der Technik.- 2.1 Das Superpositionsprinzip.- 2.2 Das Kompensationsprinzip.- 2.3 Übersicht der Prinzipien.- 3 Grundlagen.- 3.1 Herleitung des Hamiltonschen Prinzips.- 3.2 Die Legendre-Transformation.- 3.3 Hamilton-Funktion und kanonische Gleichungen.- 3.4 Dissipationsfunktion und erweiterte Hamilton-Funktion.- 4 Zur Topologie von Netzwerken.- 4.1 Kirchhoffsche Graphen.- 4.2 Fundamentalmaschenmatrix und Fundamentalschnittmengenmatrix.- 4.3 Die Knoten-Zweig-Inzidenzmatrix.- 4.4 Grundzusammenhänge zwischen Spannungen und Strömen.- 5 Die dissipative Zustandsfunktion ? und die dissipativen Impulse.- 5.1 Legendre-Transformation und Verluste.- 5.2 Der dissipative Impuls.- 6 {L, D}-Modelle von Bauelementen.- 6.1 Grundlagen der Ähnlichkeitstheorie.- 6.2 Ladungs- und Flußformulierung.- 6.3 Zweipole.- 6.4 Wandler.- 7 Der Riemannsche Raum.- 7.1 Einbettung des Riemannschen Raumes in den euklidischen Raum.- 7.2 Rechengesetze im Riemannschen Raum.- 7.3 Der N-dimensionale Riemannsche Raum.- 7.4 Geodäten.- 7.5 Behandlung von mechanischen Punktsystemen.- 7.6 Variationsprobleme im Riemannschen Raum.- 7.7 Bildung der kovarianten Impulse.- 7.8 Forminvarianz der erweiterten Euler-Lagrange-Differentialgleichung.- 8 Elemente höherer Ordnung und ihre Anwendungen.- 8.1 Definition und theoretische Grundlagen der Elemente höherer Ordnung.- 9 {L, D}-Modelle für Elemente höherer Ordnung.- 9.1 {L, D}-Modelle von idealen linearen Elementen höherer Ordnung.- 9.2 {L, D}-Modelle realer linearer Elemente höherer Ordnung.- 9.3 {L, D}-Modelle für nichtlineare Elemente höherer Ordnung.- 9.4 Übersicht zu den Formulierungsarten.- 10 Hamilton-Funktion für Systeme mit Elementen höherer Ordnung.- 10.1 Hamilton-Funktion bei klassischer Definition verallgemeinerter Impulse.- 10.2 Die Funktion H*n und die Neudefinition der verallgemeinerten Impulse.- 11 Analyse von Systemen mittels Lagrange- und Hamilton-Formalismus.- 11.1 Stabilität linearer oder linearisierter Systeme.- 11.2 Berechnung elektrischer Systeme mit Elementen höherer Ordnung.- 12 Technische Anwendungen für Elemente höherer Ordnung.- 12.1 SQUID (Superconducting Quantum Interference Device).- 12.2 Filter.- 13 Umsetzung auf dem Computer.- 13.1 Das Paket Lagrange.- 13.2 Implementation neuer Bauelemente.- 13.3 Anwendungsbeispiele.- A.1 Modelle in verallgemeinerten Koordinaten.- A.2 Modelle in Ladungsformulierung.- B Das Paket Lagrange‘.