Time Series Analysis and Adjustment: Measuring, Modelling and Forecasting for Business and Economics
Autor Haim Y. Bleikh, Warren L.Youngen Limba Engleză Hardback – 23 iul 2014
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 255.87 lei 6-8 săpt. | |
Taylor & Francis – 30 sep 2020 | 255.87 lei 6-8 săpt. | |
Hardback (1) | 1031.81 lei 6-8 săpt. | |
Taylor & Francis – 23 iul 2014 | 1031.81 lei 6-8 săpt. |
Preț: 1031.81 lei
Preț vechi: 1258.31 lei
-18% Nou
Puncte Express: 1548
Preț estimativ în valută:
197.49€ • 205.28$ • 163.59£
197.49€ • 205.28$ • 163.59£
Carte tipărită la comandă
Livrare economică 04-18 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781409441922
ISBN-10: 140944192X
Pagini: 148
Dimensiuni: 156 x 234 x 10 mm
Greutate: 0.41 kg
Ediția:1
Editura: Taylor & Francis
Colecția Routledge
Locul publicării:Oxford, United Kingdom
ISBN-10: 140944192X
Pagini: 148
Dimensiuni: 156 x 234 x 10 mm
Greutate: 0.41 kg
Ediția:1
Editura: Taylor & Francis
Colecția Routledge
Locul publicării:Oxford, United Kingdom
Cuprins
Contents: Introduction; Literature survey; Forecasting; Univariate time series analysis; Further topics in time series analysis; The development of seasonal adjustment programs; Empirical analysis; Conclusions; References; Appendices; Index.
Notă biografică
Haim Y. Bleikh is a resident researcher at the Taub Center for Social Policy Studies in Israel. Warren L. Young is Associate Professor of Economics at Bar Ilan University, Israel.
Descriere
In Time Series Analysis and Adjustment the authors explain how the last four decades have brought dramatic changes in the way researchers analyze economic and financial data on behalf of economic and financial institutions and to provide statistics. An understanding of time series and the application and knowledge of related time series adjustment procedures is essential in areas such as risk management, business cycle analysis, and forecasting. The case studies in this book demonstrate that time series adjustment methods can be efficaciously applied and utilized, for both analysis and forecasting, but they must be used in the context of reasoned statistical and economic judgment - this is the first known published study to really deal with this issue of context.