Cantitate/Preț
Produs

Timing Optimization Through Clock Skew Scheduling

Autor Ivan S. Kourtev, Eby G. Friedman, Baris Taskin
en Limba Engleză Paperback – 3 oct 2012
History of the Book The last three decades have witnessed an explosive development in integrated circuit fabrication technologies. The complexities of cur­ rent CMOS circuits are reaching beyond the 100 nanometer feature size and multi-hundred million transistors per integrated circuit. To fully exploit this technological potential, circuit designers use sophisticated Computer-Aided Design (CAD) tools. While supporting the talents of innumerable microelectronics engineers, these CAD tools have become the enabling factor responsible for the successful design and implemen­ tation of thousands of high performance, large scale integrated circuits. This research monograph originated from a body of doctoral disserta­ tion research completed by the first author at the University of Rochester from 1994 to 1999 while under the supervision of Prof. Eby G. Friedman. This research focuses on issues in the design of the clock distribution net­ work in large scale, high performance digital synchronous circuits and particularly, on algorithms for non-zero clock skew scheduling. During the development of this research, it has become clear that incorporating timing issues into the successful integrated circuit design process is of fundamental importance, particularly in that advanced theoretical de­ velopments in this area have been slow to reach the designers' desktops.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (2) 61274 lei  6-8 săpt.
  Springer Us – 3 oct 2012 61274 lei  6-8 săpt.
  Springer Us – 4 noi 2010 61555 lei  6-8 săpt.
Hardback (2) 61869 lei  6-8 săpt.
  Springer Us – 31 mar 2000 61869 lei  6-8 săpt.
  Springer Us – 21 noi 2008 62168 lei  6-8 săpt.

Preț: 61274 lei

Preț vechi: 72087 lei
-15% Nou

Puncte Express: 919

Preț estimativ în valută:
11727 12371$ 9773£

Carte tipărită la comandă

Livrare economică 02-16 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9781461369851
ISBN-10: 1461369851
Pagini: 220
Ilustrații: XXI, 194 p.
Dimensiuni: 155 x 235 x 12 mm
Greutate: 0.32 kg
Ediția:Softcover reprint of the original 1st ed. 2000
Editura: Springer Us
Colecția Springer
Locul publicării:New York, NY, United States

Public țintă

Research

Cuprins

1. Introduction.- 2. VLSI Systems.- 2.1 Signal Representation.- 2.2 Synchronous VLSI Systems.- 2.3 The VLSI Design Process.- 2.4 Summary.- 3. Signal Delay In Vlsi Systems.- 3.1 Delay Metrics.- 3.2 Devices and Interconnections.- 4. Timing Properties Of Synchronous Systems.- 4.1 Storage Elements.- 4.2 Latches.- 4.3 Parameters of Latches.- 4.4 Flip-Flops.- 4.5 Parameters of Flip-Flops.- 4.6 The Clock Signal.- 4.7 Single-Phase Path with Flip-Flops.- 4.8 Single-Phase Path with Latches.- 4.9 A Final Note.- 5. Clock Scheduling and Clock Tree Synthesis.- 5.1 Background.- 5.2 Definitions and Graphical Model.- 5.3 Clock Scheduling.- 5.4 Structure of the Clock Distribution Network.- 5.5 Solution of the Clock Tree Synthesis Problem.- 5.6 Software Implementation.- 6. Clock Scheduling For Improved Reliability.- 6.1 Problem Formulation.- 6.2 Derivation of the QP Algorithm.- 7. Practical Considerations.- 7.1 Computational Analysis.- 7.2 Unconstrained Basis Skews.- 7.3 I/O Registers and Target Delays.- 8. Experimental Results.- 8.1 Description of Computer Implementation.- 8.2 Graphical Illustrations of Results.- 9. Conclusions.- 10. Future Directions.- 10.1 Algorithmic Enhancements.- 10.2 Practical Considerations.- References.- Appendices.- A- Numerical Illustration of Algorithms.- A.1 Algorithm LMCS-1.- A.2 Algorithm LMCS-2.- A.3 Algorithm CSD.- B- Glossary of Terms.- C- Graphical Illustration of Results.- About the Authors.

Textul de pe ultima copertă

Timing Optimization Through Clock Skew Scheduling focuses on optimizing the timing of large scale, high performance, digital synchronous systems. A particular emphasis is placed on algorithms for non-zero clock skew scheduling to improve the performance and reliability of VLSI circuits.
This research monograph answers the need for a broad introduction to state-of-the-art clock skew scheduling algorithms from a circuit, graph, and mathematical optimization background. A detailed description of clock skew scheduling application on edge-triggered and level-sensitive circuits, synchronized with single and multi-phase clocking schemes, and formulated as linear programming (LP) and quadratic programming (QP) formulations are provided along with an analysis of optimal computer solution techniques. Theoretical limits of improvement in clock frequency through clock skew scheduling are highlighted. Hints and a preliminary implementation of a parallel skew scheduling application are also included.
Timing Optimization Through Clock Skew Scheduling contains sufficient detail for the advanced CAD algorithm developer, researcher and graduate student. Furthermore, with the material provided on timing properties and optimization, those readers with less background can also benefit from this book.

Caracteristici

Focuses on timing analysis and optimization techniques for circuits with level-sensitive memory elements Contains a linear programming formulation applicable to the timing analysis of large scale circuits Includes a delay insertion methodology that improves the efficiency of clock skew scheduling in level-sensitive circuits Provides an overview of circuit partitioning, placement, and synchronization methodologies that enables the implementation of high speed, low power circuits synchronized with ultra-modern resonant clocking technology Provides a framework for and results from implementing the described timing optimization algorithms in a parallel computing environment