Cantitate/Preț
Produs

Topic Detection and Tracking: Event-based Information Organization: The Information Retrieval Series, cartea 12

Editat de James Allan
en Limba Engleză Hardback – 28 feb 2002

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 206601 lei  6-8 săpt.
  Springer Us – 5 noi 2012 206601 lei  6-8 săpt.
Hardback (1) 207305 lei  6-8 săpt.
  Springer Us – 28 feb 2002 207305 lei  6-8 săpt.

Din seria The Information Retrieval Series

Preț: 207305 lei

Preț vechi: 259131 lei
-20% Nou

Puncte Express: 3110

Preț estimativ în valută:
39688 43001$ 33142£

Carte tipărită la comandă

Livrare economică 12-26 decembrie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780792376644
ISBN-10: 0792376641
Pagini: 266
Ilustrații: XI, 266 p.
Dimensiuni: 155 x 235 x 21 mm
Greutate: 0.6 kg
Ediția:2002
Editura: Springer Us
Colecția Springer
Seria The Information Retrieval Series

Locul publicării:New York, NY, United States

Public țintă

Research

Cuprins

1 Introduction to Topic Detection and Tracking.- 1 Introduction.- 2 TDT tasks.- 3 History of TDT.- 4 TDT 1999 and TDT.- 5 The Future of TDT.- 2 Topic Detection and Tracking Evaluation Overview.- 1 Introduction.- 2 TDT Definitions: Stories, Events, and Topics.- 3 TDT Corpora.- 4 Evaluation Methodology.- 5 Task Definitions.- 6 Summary.- 3 Corpora for Topic Detection and Tracking.- 1 Introduction.- 2 Overview of TDT Corpus Development.- 3 Collection of Raw Data.- 4 Transcription.- 5 Story Segmentation.- 6 Topic Definition.- 7 Topic Annotation.- 8 Corpus Formats.- 9 Some Properties of the Corpus.- 10 Conclusion.- 4 Probabilistic Approaches to Topic Detection and Tracking.- 1 Introduction.- 2 Core TDT Technologies.- 3 Corpus Processing.- 4 Tracking.- 5 Detection.- 6 Crosslingual TDT.- 7 Conclusions and Future Work.- 8 Acknowledgments.- 5 Multi-strategy Learning for TDT.- 1 Introduction.- 2 Segmentation.- 3 Topic and Event Tracking.- 4 Topic Detection.- 5 First Story Detection.- 6 Story Link Detection.- 7 Multilingual TDT.- 8 Concluding Remarks.- 6 Statistical Models of Topical Content.- 1 Introduction.- 2 Models of Story Generation.- 3 Tracking Systems.- 4 Detection System.- 5 Summary.- 7 Segmentation and Detection at IBM.- 1 Story Segmentation.- 2 Topic Detection.- 3 Acknowledgements.- 8 A Cluster-Based Approach to Broadcast News.- 1 Introduction.- 2 Segmentation.- 3 Detection.- 4 Tracking.- 5 Acknowledgements.- 9 Signal Boosting for Translingual Topic Tracking.- 1 Introduction.- 2 The Signal-to-Noise Perspective.- 3 Topic Tracking System Architecture.- 4 Contrastive Conditions.- 5 Conclusions and Future Work.- 6 Acknowledgments.- 10 Explorations Within Topic Tracking and Detection.- 1 Introduction.- 2 Basic System.- 3 Tracking.- 4 Cluster Detection.- 5 First Story Detection.- 6 Link Detection.- 7 Bounds on Effectiveness.- 8 Automatic Timeline Generation.- 9 Conclusions.- 11 Towards a “Universal Dictionary” for Multi-Language IR Applications.- 1 Introduction.- 2 Our TDT tracking algorithm.- 3 The “Universal Dictionary” experiment.- 4 Conclusions and Directions for Future Work.- 12 An NLP & IR Approach to Topic Detection.- 1 Introduction.- 2 General System Framework.- 3 Representation of News Stories and Topics.- 4 Similarity and Interpretation of a Two-threshold Method.- 5 Multilingual Topic Detection.- 6 Development Experiments.- 7 Evaluation.- 8 Discussion.- 9 Concluding Remarks and Future Works.