Topology and Maps: Mathematical Concepts and Methods in Science and Engineering, cartea 5
Editat de T. Husainen Limba Engleză Paperback – 27 dec 2012
Din seria Mathematical Concepts and Methods in Science and Engineering
- Preț: 390.94 lei
- 18% Preț: 712.02 lei
- Preț: 384.22 lei
- Preț: 375.40 lei
- Preț: 386.27 lei
- Preț: 388.70 lei
- Preț: 373.39 lei
- Preț: 373.55 lei
- Preț: 378.99 lei
- Preț: 371.86 lei
- Preț: 375.40 lei
- 20% Preț: 624.11 lei
- Preț: 386.81 lei
- Preț: 377.82 lei
- Preț: 376.93 lei
- 15% Preț: 635.07 lei
- 20% Preț: 324.23 lei
- 15% Preț: 620.96 lei
- 20% Preț: 327.26 lei
- Preț: 371.86 lei
- 15% Preț: 634.31 lei
- 15% Preț: 587.39 lei
- Preț: 379.88 lei
- 18% Preț: 919.56 lei
- 18% Preț: 929.23 lei
- Preț: 377.82 lei
- 18% Preț: 928.76 lei
- 15% Preț: 626.18 lei
- 18% Preț: 929.83 lei
- 18% Preț: 1197.96 lei
- 18% Preț: 1198.08 lei
- Preț: 381.20 lei
- 18% Preț: 930.44 lei
- 15% Preț: 620.61 lei
- 18% Preț: 922.78 lei
- 15% Preț: 630.17 lei
Preț: 379.72 lei
Nou
Puncte Express: 570
Preț estimativ în valută:
72.68€ • 75.75$ • 60.50£
72.68€ • 75.75$ • 60.50£
Carte tipărită la comandă
Livrare economică 06-20 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781461588009
ISBN-10: 1461588006
Pagini: 360
Ilustrații: XX, 337 p.
Dimensiuni: 152 x 229 x 19 mm
Greutate: 0.48 kg
Ediția:Softcover reprint of the original 1st ed. 1977
Editura: Springer Us
Colecția Springer
Seria Mathematical Concepts and Methods in Science and Engineering
Locul publicării:New York, NY, United States
ISBN-10: 1461588006
Pagini: 360
Ilustrații: XX, 337 p.
Dimensiuni: 152 x 229 x 19 mm
Greutate: 0.48 kg
Ediția:Softcover reprint of the original 1st ed. 1977
Editura: Springer Us
Colecția Springer
Seria Mathematical Concepts and Methods in Science and Engineering
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
I. Preliminaries.- 1. Fundamental Notions of Set Theory.- 2. Relations and Mappings.- 3. Partial and Linear Orderings; Cartesian Products.- 4. Lattices.- 5. Algebraic Structures.- 6. Categories and Functors.- II. Topological Spaces.- 7. Open and Closed Sets.- 8. Topologies and Neighborhoods.- 9. Limit Points.- 10. Bases and Subbases.- 11. First and Second Countable Spaces.- 12. Metric Spaces.- 13. Nets.- 14. Filters.- 15. Topologies Defined by Other Topologies.- Examples and Exercises.- III. Continuity and Separation Axioms.- 16. Continuous and Open Mappings.- 17. Topologies Defined by Mappings.- 18. Separation Axioms.- 19. Continuous Functions on Normal Spaces.- Examples and Exercises.- IV. Methods for Constructing New Topological Spaces from Old.- 20. Subspaces.- 21. Topological Sums.- 22. Topological Products.- 23. Quotient Topology and Quotient Spaces.- 24. Projective and Inductive Limits.- Examples and Exercises.- V. Uniform Spaces.- 25. Uniformities and Topologies.- 26. Uniformity and Separation Axioms.- 27. Uniformizable Spaces.- 28. Uniform Continuity and Uniform Spaces.- 29. Completeness in Uniform Spaces.- 30. Completeness, Compactness, and Completions.- 31. Topological Groups and Topological Vector Spaces.- 32. Metrizability.- 33. Fixed Points.- 34. Proximity Spaces.- Examples and Exercises.- VI. Compact Spaces and Various Other Types of Spaces.- 35. Compact Spaces.- 36. Countable Compactness and Sequential Compactness.- 37. Compactness in Metric Spaces.- 38. Locally Compact Spaces.- 39. MB-Spaces.- 40. k-Spaces and kr-Spaces.- 41. Baire Spaces.- 42. Pseudocompact Spaces.- 43. Paracompact Spaces.- 44. Compactifications.- Examples and Exercises.- VII. Generalizations of Continuous Maps.- 45. Almost Continuous Maps.- 46. Closed Graphs.- 47. Almost Continuity and Closed Graphs.- 48. Graphically Continuous Maps.- 49. Nearly Continuous and w-Continuous Maps.- 50. Semicontinuous Maps.- 51. Approximately Continuous Functions.- 52. Applications of Almost Continuity.- Examples and Exercises.- VIE. Function Spaces.- 53. The Set of All Maps.- 54. Compact-Open Topology and the Topology of Joint Continuity.- 55. Subsets of FE with Induced Topologies.- 56. The Uniformities on FE.- 57. 𝔖-Uniformities and 𝔖-Topologies.- 58. Equicontinuous Maps.- 59. Equicontinuity and Metric Spaces.- 60. Sequential Convergence in Function Spaces.- Examples and Exercises.- IX. Extensions of Mappings.- 61. Extensions of Maps on Completely Regular and Metric Spaces.- 62. The Hahn-Banach Extension Theorem.- 63. A General Extension Theorem.- Examples and Exercises.- X. C(X) Spaces.- 64. Stone-Weierstrass Theorem.- 65. Embeddings of X into C(X).- 66. C(X) Spaces for Compact Spaces X.- 67. Separability in C(X).- 68. C(X) Spaces for Completely Regular Spaces X.- 69. Characterization of Banach and Fréchet Spaces C(X).- 70. Characterization of Locally Convex Spaces C(X).- Epilogue.- Examples and Exercises.