Cantitate/Preț
Produs

Tuning Metaheuristics: A Machine Learning Perspective: Studies in Computational Intelligence, cartea 197

Autor Mauro Birattari
en Limba Engleză Hardback – 8 apr 2009

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 63728 lei  6-8 săpt.
  Springer Berlin, Heidelberg – 28 oct 2010 63728 lei  6-8 săpt.
Hardback (1) 64348 lei  6-8 săpt.
  Springer Berlin, Heidelberg – 8 apr 2009 64348 lei  6-8 săpt.

Din seria Studies in Computational Intelligence

Preț: 64348 lei

Preț vechi: 75704 lei
-15% Nou

Puncte Express: 965

Preț estimativ în valută:
12314 12872$ 10406£

Carte tipărită la comandă

Livrare economică 07-21 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783642004827
ISBN-10: 3642004822
Pagini: 232
Ilustrații: X, 221 p.
Dimensiuni: 155 x 235 x 25 mm
Greutate: 0.5 kg
Ediția:1st ed. 2005. 2nd printing 2009
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Studies in Computational Intelligence

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

Background and State-of-the-Art.- Statement of the Tuning Problem.- F-Race for Tuning Metaheuristics.- Experiments and Applications.- Some Considerations on the Experimental Methodology.- Conclusions.

Textul de pe ultima copertă

The importance of tuning metaheuristics is widely acknowledged in scientific literature. However, there is very little dedicated research on the subject.  Typically, scientists and practitioners tune metaheuristics by hand, guided only by their experience and by some rules of thumb. Tuning metaheuristics is often considered to be more of an art than a science.
This book lays the foundations for a scientific approach to tuning metaheuristics.  The fundamental intuition that underlies Birattari's approach is that the tuning problem has much in common with the problems that are typically faced in machine learning.  By adopting a machine learning perspective, the author gives a formal definition of the tuning problem, develops a generic algorithm for tuning metaheuristics, and defines an appropriate experimental methodology for assessing the performance of metaheuristics.

Caracteristici

Presents a machine learning approach to methaheuristics Includes supplementary material: sn.pub/extras