Tuning Metaheuristics: A Machine Learning Perspective: Studies in Computational Intelligence, cartea 197
Autor Mauro Birattarien Limba Engleză Hardback – 8 apr 2009
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 637.28 lei 6-8 săpt. | |
Springer Berlin, Heidelberg – 28 oct 2010 | 637.28 lei 6-8 săpt. | |
Hardback (1) | 643.48 lei 6-8 săpt. | |
Springer Berlin, Heidelberg – 8 apr 2009 | 643.48 lei 6-8 săpt. |
Din seria Studies in Computational Intelligence
- 50% Preț: 264.48 lei
- 20% Preț: 1158.26 lei
- 20% Preț: 986.66 lei
- 20% Preț: 1452.76 lei
- 20% Preț: 168.78 lei
- 18% Preț: 1112.30 lei
- 20% Preț: 565.38 lei
- 20% Preț: 649.28 lei
- 20% Preț: 1047.73 lei
- 20% Preț: 1578.96 lei
- 20% Preț: 643.50 lei
- 20% Preț: 657.49 lei
- 20% Preț: 993.28 lei
- 20% Preț: 990.80 lei
- 20% Preț: 989.96 lei
- 20% Preț: 1165.69 lei
- 20% Preț: 1444.52 lei
- 20% Preț: 1041.96 lei
- 20% Preț: 1047.73 lei
- 20% Preț: 1046.06 lei
- 18% Preț: 2500.50 lei
- 20% Preț: 989.13 lei
- 20% Preț: 1165.69 lei
- 20% Preț: 1164.05 lei
- 20% Preț: 1042.79 lei
- 20% Preț: 1460.19 lei
- 18% Preț: 1403.52 lei
- 18% Preț: 1124.92 lei
- 20% Preț: 1039.47 lei
- 20% Preț: 1008.11 lei
- 20% Preț: 1045.25 lei
- 20% Preț: 1275.42 lei
- 20% Preț: 1040.32 lei
- 20% Preț: 988.32 lei
- 20% Preț: 1169.79 lei
- 20% Preț: 1162.37 lei
- 20% Preț: 1059.26 lei
- 20% Preț: 1164.05 lei
- 20% Preț: 1166.52 lei
- 20% Preț: 1459.38 lei
- 18% Preț: 1005.74 lei
- 20% Preț: 997.38 lei
- 20% Preț: 1055.94 lei
- 20% Preț: 1284.47 lei
- 20% Preț: 994.08 lei
- 20% Preț: 1048.72 lei
- 20% Preț: 1066.02 lei
- 20% Preț: 943.78 lei
- 20% Preț: 1173.10 lei
- 20% Preț: 1457.72 lei
Preț: 643.48 lei
Preț vechi: 757.04 lei
-15% Nou
Puncte Express: 965
Preț estimativ în valută:
123.14€ • 128.72$ • 104.06£
123.14€ • 128.72$ • 104.06£
Carte tipărită la comandă
Livrare economică 07-21 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642004827
ISBN-10: 3642004822
Pagini: 232
Ilustrații: X, 221 p.
Dimensiuni: 155 x 235 x 25 mm
Greutate: 0.5 kg
Ediția:1st ed. 2005. 2nd printing 2009
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Studies in Computational Intelligence
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642004822
Pagini: 232
Ilustrații: X, 221 p.
Dimensiuni: 155 x 235 x 25 mm
Greutate: 0.5 kg
Ediția:1st ed. 2005. 2nd printing 2009
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Studies in Computational Intelligence
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
Background and State-of-the-Art.- Statement of the Tuning Problem.- F-Race for Tuning Metaheuristics.- Experiments and Applications.- Some Considerations on the Experimental Methodology.- Conclusions.
Textul de pe ultima copertă
The importance of tuning metaheuristics is widely acknowledged in scientific literature. However, there is very little dedicated research on the subject. Typically, scientists and practitioners tune metaheuristics by hand, guided only by their experience and by some rules of thumb. Tuning metaheuristics is often considered to be more of an art than a science.
This book lays the foundations for a scientific approach to tuning metaheuristics. The fundamental intuition that underlies Birattari's approach is that the tuning problem has much in common with the problems that are typically faced in machine learning. By adopting a machine learning perspective, the author gives a formal definition of the tuning problem, develops a generic algorithm for tuning metaheuristics, and defines an appropriate experimental methodology for assessing the performance of metaheuristics.
This book lays the foundations for a scientific approach to tuning metaheuristics. The fundamental intuition that underlies Birattari's approach is that the tuning problem has much in common with the problems that are typically faced in machine learning. By adopting a machine learning perspective, the author gives a formal definition of the tuning problem, develops a generic algorithm for tuning metaheuristics, and defines an appropriate experimental methodology for assessing the performance of metaheuristics.
Caracteristici
Presents a machine learning approach to methaheuristics Includes supplementary material: sn.pub/extras