Uncertainty in Biology: A Computational Modeling Approach: Studies in Mechanobiology, Tissue Engineering and Biomaterials, cartea 17
Editat de Liesbet Geris, David Gomez-Cabreroen Limba Engleză Paperback – 23 aug 2016
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 711.64 lei 43-57 zile | |
Springer International Publishing – 23 aug 2016 | 711.64 lei 43-57 zile | |
Hardback (1) | 718.62 lei 43-57 zile | |
Springer International Publishing – 11 noi 2015 | 718.62 lei 43-57 zile |
Din seria Studies in Mechanobiology, Tissue Engineering and Biomaterials
- 5% Preț: 681.26 lei
- 18% Preț: 1099.00 lei
- 5% Preț: 1085.49 lei
- 5% Preț: 1080.88 lei
- 5% Preț: 709.85 lei
- 5% Preț: 1077.99 lei
- 5% Preț: 700.90 lei
- 5% Preț: 713.25 lei
- 5% Preț: 704.49 lei
- 5% Preț: 718.62 lei
- 5% Preț: 1088.58 lei
- 5% Preț: 710.77 lei
- 5% Preț: 1073.53 lei
- 5% Preț: 1142.47 lei
- 5% Preț: 715.07 lei
- 5% Preț: 1072.97 lei
- 5% Preț: 707.16 lei
- 5% Preț: 1266.46 lei
- 18% Preț: 932.01 lei
- 5% Preț: 1072.26 lei
- 5% Preț: 1086.76 lei
- 5% Preț: 699.81 lei
- 5% Preț: 1071.20 lei
- 5% Preț: 1079.77 lei
- 5% Preț: 1084.79 lei
Preț: 711.64 lei
Preț vechi: 749.09 lei
-5% Nou
Puncte Express: 1067
Preț estimativ în valută:
136.19€ • 141.47$ • 113.13£
136.19€ • 141.47$ • 113.13£
Carte tipărită la comandă
Livrare economică 03-17 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783319343723
ISBN-10: 3319343726
Pagini: 478
Ilustrații: IX, 478 p.
Dimensiuni: 155 x 235 mm
Greutate: 0.68 kg
Ediția:Softcover reprint of the original 1st ed. 2016
Editura: Springer International Publishing
Colecția Springer
Seria Studies in Mechanobiology, Tissue Engineering and Biomaterials
Locul publicării:Cham, Switzerland
ISBN-10: 3319343726
Pagini: 478
Ilustrații: IX, 478 p.
Dimensiuni: 155 x 235 mm
Greutate: 0.68 kg
Ediția:Softcover reprint of the original 1st ed. 2016
Editura: Springer International Publishing
Colecția Springer
Seria Studies in Mechanobiology, Tissue Engineering and Biomaterials
Locul publicării:Cham, Switzerland
Cuprins
An Introduction to Uncertainty in the Development of Computational Models of Biological Processes.- Reverse Engineering under Uncertainty.- Probabilistic Computational Causal Discovery for Systems Biology.- Macroscopic Simulation of Individual-Based Stochastic Models for Biological Processes.- The Experimental Side of Parameter Estimation.- Statistical Data Analysis and Modeling.- Optimization in Biology: Parameter Estimation and the Associated Optimization Problem.- Interval Methods.- Model Extension and Model Selection.- Bayesian Model Selection Methods and their Application to Biological ODE Systems.- Sloppiness and the Geometry of Parameter Space.- Modeling and Model Simplification to Facilitate Biological Insights and Predictions.- Sensitivity Analysis by Design of Experiments.- Waves in Spatially-Disordered Neural Fields: a Case Study in Uncertainty Quantification.- X In-silico Models of Trabecular Bone: a Sensitivity Analysis Perspective.- Neuroswarm: a Methodology to Explore the Constraints that Function Imposes on Simulation Parameters in Large-Scale Networks of Biological Neurons.- Prediction Uncertainty Estimation Despite Unidentifiability: an Overview of Recent Developments.- Computational Modeling Under Uncertainty: Challenges and Opportunities.
Textul de pe ultima copertă
Computational modeling of biomedical processes is gaining more and more weight in the current research into the etiology of biomedical problems and potential treatment strategies. Computational modeling allows to reduce, refine and replace animal experimentation as well as to translate findings obtained in these experiments to the human background.
However these biomedical problems are inherently complex with a myriad of influencing factors, which strongly complicates the model building and validation process. This book wants to address four main issues related to the building and validation of computational models of biomedical processes:
However these biomedical problems are inherently complex with a myriad of influencing factors, which strongly complicates the model building and validation process. This book wants to address four main issues related to the building and validation of computational models of biomedical processes:
- Modeling establishment under uncertainty
- Model selection and parameter fitting
- Sensitivity analysis and model adaptation
- Model predictions under uncertainty
Caracteristici
Addresses several main issues of building and validating computational models of biomedical processes Identifies key techniques to model biomedical processes under uncertainty Presents the main outcome of key research groups in the field Includes supplementary material: sn.pub/extras