Cantitate/Preț
Produs

Urban Water Resources

Autor Monzur Alam Imteaz
en Limba Engleză Paperback – 31 mar 2021
Ever increasing urbanization is impacting both the quantity and quality of urban water resources. These urban water resources and components of the water cycle are likely to be affected severely. To minimize the consequences on world water resources, the development of sustainable water resources management strategies is inevitable. An integrated urban water resources management strategy is the key to maintain sustainable water resources. A preliminary understanding of physio-chemical processes and analysis methodologies involved in each and every component of the urban water cycle is necessary. In the past these components have been investigated and published individually.




With the view to aiding the development of integrated urban water resources management strategies, this book endeavors to present and explain the major urban water cycle components from a single holistic platform. The book presents the introduction, analysis and design methods of a wide range of urban water components i.e., rainfall, flood, drainage, water supply and waste water with the additions of sustainability practices in most of the components. Current "Hydrology" and "Hydraulics" books do not incorporate sustainability features and practices, while there are many books on general "Sustainability" without integrating sustainability concepts into typical engineering designs.




The book starts with components and classifications of world water resources, then basic and detailed components of the hydrologic cycle, climate change and its impacts on hydrologic cycle, rainfall patterns and measurements, rainfall losses, derivations of design rainfalls, streamflow measurements, flood frequency analysis and probabilistic flood estimations, deterministic flood estimations, unit hydrograph, flood modelling, commercial modelling tools and use of Geographical Information System (GIS) for flood modelling, principles of open channel hydraulics, critical flow and flow classification indices, open channel flow profiles, uniform flow in open channel and open channel design, estimation of future population and domestic water demand, design of water supply systems, sustainable water supply system, water treatments, wastewater quantification, wastewater treatments, sustainable and decentralized wastewater treatment, stormwater drainage and urban drainage analysis, water footprint and water-energy nexus, features of water conservation, harvesting and recycling, components of sustainable urban design, stormwater treatment and integrated water management.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 33814 lei  6-8 săpt.
  CRC Press – 31 mar 2021 33814 lei  6-8 săpt.
Hardback (1) 122505 lei  6-8 săpt.
  CRC Press – 28 aug 2019 122505 lei  6-8 săpt.

Preț: 33814 lei

Preț vechi: 38668 lei
-13% Nou

Puncte Express: 507

Preț estimativ în valută:
6471 6676$ 5477£

Carte tipărită la comandă

Livrare economică 04-18 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780367779276
ISBN-10: 0367779277
Pagini: 308
Dimensiuni: 156 x 234 mm
Greutate: 0.44 kg
Ediția:1
Editura: CRC Press
Colecția CRC Press

Cuprins

Table of Contents:


Preface
Acknowledgements
About the author



Introduction
World Water Resources
Classifications of Water Resources 
Climate and Climate Change 
Seasonality Index 
Drought Index


Hydrologic Cycle and Rainfall-Runoff Processes
Hydrological Cycle and Systems 
Water Balance 
Precipitation 
Precipitation Measurement 
Rainfall Variability
Evaporation and Transpiration
Catchment and Watershed 
Abstraction and Losses 
Runoff and Hydrographs 
Streamflow Measurements 
Rating Curve


Probabilistic Rainfall/Flood Estimation
Introduction to Flood Estimation 
Terminologies used in Probability Analysis 
Failure and Risk 
Hydrological Data 
Flood Frequency Analysis


Design Rainfall
Introduction 
Intensity-Duration Relationship 
Derivation of Design Rainfall 
Temporal Pattern


Deterministic Flow/Flood Estimations
Introduction 
Hydrograph Details 
Rational Method 
Time of Concentration 
Non-Homogeneous Catchment 
Partial Area Effect 
Composite Catchment 
Unit Hydrograph Method 
Flood Modelling 
Time-Area Method 
Modelling Tools


Open Channel Hydraulics
Introduction 
Principles and Equations 
Effect of Streamline Position 
Solutions of Energy Equation 
Critical Depth Calculations 
Froude Number 
Applications of Energy Equation 
Gravity Wave and its Applications


Uniform Flow in Open Channel
Flow Classifications 
Uniform Flow Equation 
Solutions of Manning’s Equation 
Details of Manning’s Roughness 
Compound Channel 
Conveyance of Open Channel 
Design of Uniform Flow Channel


Hydraulic Modelling
Introduction 
Solution Process 
Data Requirements 
Hydraulic Modelling using HEC-RAS


Water Supply Systems
Introduction 
Water Consumption Pattern 
Estimation of Demand 
Water Supply System Components 
Storage Tank Sizing 
Pipe System Analysis and Design 
Water Quality 
Water Treatment Processes 
Water Quality Measurement and Calculations 
Settling of Particles in a Fluid 
Sedimentation Basin Sizing


Wastewater Systems
Introduction 
Wastewater Collection System 
Quantification of Wastewater 
Quality of Wastewater 
Wastewater Treatment 
Disinfection, Sludge Treatment and Disposal 
Sustainable Wastewater Treatment and Recycling


Stormwater Drainage
Introduction 
Components of Urban Stormwater Drainage 
Design Calculations and Equations 
Hydraulic Grade Line (HGL) Analysis 
Onsite Detention (OSD) Tank 
Urban Drainage Analysis 
Pit Location Design and Bypass Flow 
Overland Flow path 


Water Conservation and Recycling
Introduction 
Water Footprint 
Sustainable Water Fixtures 
Stormwater Harvesting 
Greywater Recycling 
Centralised Recycled Water


Water Sensitive Urban Design
Introduction 
Grass Swale 
Sand Filter 
Bioretention System 
Porous Pavement 
Sedimentation Basin 
Wetland 
Riparian Vegetation 
Rainwater Tank


Appendix A Manning's ‘n’ values for Channels (Chow,

Recenzii

"Imteaz (Swinburne Univ. of Technology, Melbourne) provides a concise text that combines hydrology with applications such as design for drainage, drinking water supply, and wastewater treatment systems. While the subject matter treatment is mostly standard, it is especially well done here and supported by numerous mathematical examples. The design of water and wastewater treatment plants falls somewhat outside the scope of this book, yet it is covered, again in a concise rather than comprehensive way. In particular, little is said here about water quality. This book is about water quantity—getting water, storing it, moving it, and removing it. For these purposes, it provides a nice summary. The earlier chapters are relatively more comprehensive: they cover hydrology, probabilistic rainfall descriptions, flood prediction, and open channel flow. The author's intent is to integrate considerations of sustainability, and this purpose is well served in opening chapters addressing climate change, droughts, and rainfall variability. The final chapters discuss water conservation and recycling, and feature brief descriptions of “green infrastructure” approaches. Overall, this book is appropriate as an introductory text for undergraduates or for working professionals who want to learn some of the basics of this field."
D. A. Vaccari, Stevens Institute of Technology, CHOICE, June 2020 Vol. 57 No. 10

Descriere

The book provides an overview of the urban water components, design concepts and steps of different urban water components, water sustainability and how it can be achieved through an integrated urban water management concept, modern modelling tools for the assessments of different components of urban water system.