Vector Variational Inequalities and Vector Equilibria: Mathematical Theories: Nonconvex Optimization and Its Applications, cartea 38
Editat de F. Giannessien Limba Engleză Paperback – 17 sep 2011
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 1228.47 lei 6-8 săpt. | |
Springer Us – 17 sep 2011 | 1228.47 lei 6-8 săpt. | |
Hardback (1) | 1234.94 lei 6-8 săpt. | |
Springer Us – 31 dec 1999 | 1234.94 lei 6-8 săpt. |
Din seria Nonconvex Optimization and Its Applications
- 18% Preț: 949.73 lei
- 20% Preț: 1281.67 lei
- Preț: 396.78 lei
- 18% Preț: 1222.31 lei
- 18% Preț: 948.79 lei
- 18% Preț: 1824.64 lei
- 18% Preț: 1231.32 lei
- 18% Preț: 955.25 lei
- 18% Preț: 1555.51 lei
- 20% Preț: 996.72 lei
- 18% Preț: 1227.67 lei
- 18% Preț: 3321.13 lei
- 18% Preț: 1222.31 lei
- 15% Preț: 598.32 lei
- 18% Preț: 1223.55 lei
- 24% Preț: 1137.18 lei
- 20% Preț: 995.57 lei
- 18% Preț: 956.33 lei
- 20% Preț: 1000.38 lei
- 15% Preț: 646.43 lei
- 18% Preț: 1225.94 lei
- 18% Preț: 950.66 lei
- 18% Preț: 952.26 lei
- 18% Preț: 1222.31 lei
- 18% Preț: 1831.27 lei
- 18% Preț: 1234.94 lei
- 18% Preț: 951.47 lei
Preț: 1228.47 lei
Preț vechi: 1498.13 lei
-18% Nou
Puncte Express: 1843
Preț estimativ în valută:
235.17€ • 241.99$ • 198.24£
235.17€ • 241.99$ • 198.24£
Carte tipărită la comandă
Livrare economică 01-15 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781461379850
ISBN-10: 1461379857
Pagini: 544
Ilustrații: XIV, 526 p.
Dimensiuni: 160 x 240 x 29 mm
Greutate: 0.75 kg
Ediția:2000
Editura: Springer Us
Colecția Springer
Seria Nonconvex Optimization and Its Applications
Locul publicării:New York, NY, United States
ISBN-10: 1461379857
Pagini: 544
Ilustrații: XIV, 526 p.
Dimensiuni: 160 x 240 x 29 mm
Greutate: 0.75 kg
Ediția:2000
Editura: Springer Us
Colecția Springer
Seria Nonconvex Optimization and Its Applications
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
Vector Equilibrium Problems and Vector Variational Inequalities.- Generalized Vector Variational-Like Inequalities and their Scalarization.- Existence of Solutions for Generalized Vector Variational-Like Inequalities.- On Gap Functions for Vector Variational Inequalities.- Existence of Solutions for Vector Variational Inequalities.- On the Existence of Solutions to Vector Complementarity Problems.- Vector Variational Inequalities and Modelling of a Continuum Traffic Equilibrium Problem.- Generalized Vector Variationa-Like Inequalities without Monotonicity.- Generalized Vector Variationa-Like Inequalities with Cx-?-Pseudomonotone Set-Valued Mappings.- A Vector Variationa-Like Inequality for Compact Acyclic Multifunctions and its Applications.- On the Theory of Vector Optimization and Variational Inequalities. Image Space Analysis and Separation.- Scalarization Methods for Vector Variational Inequality.- Super Efficiency for a Vector Equilibrium in Locally Convex Topological Vector Spaces.- The Existence of Essentially Connected Components of Solutions for Variational Inequalities.- Existence of Solutions for Vector Saddle-Point Problems.- Vector Variational Inequality as a Tool for Studying Vector Optimization Problems.- Vector Variational Inequalities in a Hausdorff Topological Vector Space.- Vector Ekeland Variational Principle.- Convergence of Approximate Solutions and Values in Parametric Vector Optimization.- On Minty Vector Variational Inequality.- Generalized Vector Variational-Like Inequalities.- On Vector Complementarity Systems and Vector Variational Inequalities.- Generalized Vector Variational Inequalities.- Vector Equilibrium Problems with Set-Valued Mappings.- On Some Equivalent Conditions of Vector Variational Inequalities.- On Inverse Vector VariationalInequalities.- Vector Variational Inequalities, Vector Equilibrium Flow and Vector Optimization.- On Monotone and Strongly Monotone Vector Variational Inequalities.- Connectedness and Stability of the Solution Sets in Linear Fractional Vector Optimization Problems.- Vector Variational Inequality and Implicit Vector Complementarity Problems.- References on Vector Variational Inequalities.- Contributors.