Cantitate/Preț
Produs

Virtual Equivalent System Approach for Stability Analysis of Model-based Control Systems

Autor Weicun Zhang, Qing Li
en Limba Engleză Paperback – 6 iun 2021
This book puts forward the concept of a virtual equivalent system (VES) based on theoretical analysis and simulation results. The new concept will facilitate the development of a unified framework for analyzing the stability and convergence of self-tuning control (STC) systems, and potentially, of all adaptive control systems. The book then shows that a time-varying STC system can be converted into a time-invariant system using a certain nonlinear compensation signal, which reduces the complexity and difficulty of stability and convergence analysis. In closing, the VES concept and methodology are used to assess the stability of multiple model adaptive control (MMAC) systems and T-S model-based fuzzy control systems.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 61100 lei  6-8 săpt.
  Springer Nature Singapore – 6 iun 2021 61100 lei  6-8 săpt.
Hardback (1) 61680 lei  6-8 săpt.
  Springer Nature Singapore – 6 iun 2020 61680 lei  6-8 săpt.

Preț: 61100 lei

Preț vechi: 71882 lei
-15% Nou

Puncte Express: 917

Preț estimativ în valută:
11692 12352$ 9775£

Carte tipărită la comandă

Livrare economică 01-15 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9789811555404
ISBN-10: 9811555400
Ilustrații: XIII, 168 p. 100 illus., 15 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.27 kg
Ediția:1st ed. 2021
Editura: Springer Nature Singapore
Colecția Springer
Locul publicării:Singapore, Singapore

Cuprins

Motivation and Contents of the Monograph.-Stability and Convergence Analysis of Self-Tuning Control Systems.- Further Results On Stability and Convergence of Self-Tuning Control Systems.- Stable Weighted Multiple Model Adaptive Control: Continuous-Time Plant.- Stable Weighted Multiple Model Adaptive Control: Discrete-Time Stochastic Plant.- Further Results on Stable Weighted Multiple Model Adaptive Control: Discrete-Time Stochastic Plant.- Stability of Continuous-Time T-S Model Based Fuzzy Control Systems.- Appendix A Lemma and proofs for Chapter 2.- Appendix B Lemma and Proofs for Chapter 4.- Appendix C Lemma and proofs for Chapter 6.- Appendix D Lemma and proofs for Chapter 7.

Notă biografică

Weicun ZHANG is an associate professor at the School of Automation and Electrical Engineering, University of Science and Technology Beijing. He obtained his Ph.D. degree in control theory and applications from Tsinghua University in 1993. His research interest covers adaptive control, multiple model adaptive control, intelligent control, and their applications, etc.
Qing Li is a professor at the School of Automation and Electrical Engineering, University of Science and Technology Beijing. He obtained his Ph.D. degree in control theory and applications from University of Science and Technology Beijing in 2000. His research interest covers intelligent control, navigation, path planning and their applications, etc


Textul de pe ultima copertă

This book puts forward the concept of a virtual equivalent system (VES) based on theoretical analysis and simulation results. The new concept will facilitate the development of a unified framework for analyzing the stability and convergence of self-tuning control (STC) systems, and potentially, of all adaptive control systems. The book then shows that a time-varying STC system can be converted into a time-invariant system using a certain nonlinear compensation signal, which reduces the complexity and difficulty of stability and convergence analysis. In closing, the VES concept and methodology are used to assess the stability of multiple model adaptive control (MMAC) systems and T-S model-based fuzzy control systems.

Caracteristici

Presents a unified analysis tool to help understand and assess the stability, convergence, and robustness of STC systems Provides a transfer-function block diagram-based interpretation to aid in comprehension Combines theory and analysis with simulation-based verification