Visual and Text Sentiment Analysis through Hierarchical Deep Learning Networks: SpringerBriefs in Computer Science
Autor Arindam Chaudhurien Limba Engleză Paperback – 15 apr 2019
The mathematical abstraction of the sentiment analysis model is presented in a very lucid manner. The complete sentiments are analysed by combining text and visual prediction results. The book’s novelty lies in its development of innovative hierarchical recurrent neural networks for analysing sentiments; stacking of multiple recurrent layers by controlling the signal flow from upper recurrent layers to lower layers through a global gating unit; evaluation of HGFRNNs with different types of recurrent units; and adaptive assignment of HGFRNN layers to different timescales. Considering the need to leverage large-scale social multimedia content for sentiment analysis, both state-of-the-art visual and textual sentiment analysis techniques are used for joint visual-textual sentiment analysis. The proposed method yields promising results from Twitter datasets that include both texts and images, which support the theoretical hypothesis.
Din seria SpringerBriefs in Computer Science
- Preț: 446.47 lei
- 20% Preț: 296.17 lei
- Preț: 475.83 lei
- 20% Preț: 325.63 lei
- 20% Preț: 166.97 lei
- 20% Preț: 335.65 lei
- 20% Preț: 406.90 lei
- 20% Preț: 323.00 lei
- 20% Preț: 323.00 lei
- 20% Preț: 322.81 lei
- 20% Preț: 322.17 lei
- 20% Preț: 322.35 lei
- 20% Preț: 321.85 lei
- Preț: 375.45 lei
- 20% Preț: 232.68 lei
- 20% Preț: 324.17 lei
- 20% Preț: 323.00 lei
- 20% Preț: 323.34 lei
- 20% Preț: 322.50 lei
- 20% Preț: 324.17 lei
- 20% Preț: 323.46 lei
- 20% Preț: 322.17 lei
- 20% Preț: 322.02 lei
- 20% Preț: 323.46 lei
- Preț: 374.08 lei
- Preț: 408.23 lei
- Preț: 341.50 lei
- 20% Preț: 324.49 lei
- Preț: 344.47 lei
- Preț: 376.80 lei
- Preț: 377.18 lei
- 20% Preț: 324.17 lei
- 20% Preț: 352.26 lei
- 20% Preț: 321.32 lei
- 20% Preț: 322.17 lei
- 20% Preț: 324.17 lei
- 20% Preț: 322.02 lei
- Preț: 374.46 lei
- 20% Preț: 320.21 lei
- 20% Preț: 323.34 lei
- 20% Preț: 324.17 lei
- 20% Preț: 231.84 lei
- 20% Preț: 294.95 lei
- 20% Preț: 322.50 lei
- 20% Preț: 321.52 lei
- 20% Preț: 323.34 lei
- 20% Preț: 323.00 lei
- 20% Preț: 323.80 lei
- 20% Preț: 323.80 lei
- 20% Preț: 324.49 lei
Preț: 323.66 lei
Preț vechi: 404.58 lei
-20% Nou
Puncte Express: 485
Preț estimativ în valută:
61.94€ • 64.27$ • 51.77£
61.94€ • 64.27$ • 51.77£
Carte tipărită la comandă
Livrare economică 15-29 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9789811374739
ISBN-10: 9811374732
Pagini: 93
Ilustrații: XIX, 98 p. 49 illus., 42 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.18 kg
Ediția:1st ed. 2019
Editura: Springer Nature Singapore
Colecția Springer
Seria SpringerBriefs in Computer Science
Locul publicării:Singapore, Singapore
ISBN-10: 9811374732
Pagini: 93
Ilustrații: XIX, 98 p. 49 illus., 42 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.18 kg
Ediția:1st ed. 2019
Editura: Springer Nature Singapore
Colecția Springer
Seria SpringerBriefs in Computer Science
Locul publicării:Singapore, Singapore
Cuprins
Chapter1. Introduction.- Chapter 2. Current State of Art.- Chapter 3. Literature Review.- Chapter 4. Twitter Datasets Used.- Chapter 5. Visual and Text Sentiment Analysis.- Chapter 6. Experimental Setup: Visual and Text Sentiment Analysis through Hierarchical Deep Learning Networks.- Chapter 7. Twitter Datasets Used.- Chapter 8. Experimental Results.- Chapter 9. Conclusion.
Recenzii
“Readers interested in sentiment analysis research will find it useful. The research is a good contribution to our understanding of HGFRNNs and the development of a technique for sentiment analysis.” (Maulik A. Dave, Computing Reviews, January 25, 2021)
Notă biografică
Arindam Chaudhuri is currently working as Principal Data Scientist at the Samsung R & D Institute in Delhi, India. He has worked in industry, research, and academics in the domain of machine learning for the past 19 years. His current research interests include pattern recognition, machine learning, soft computing, optimization, and big data. He received his M.Tech and PhD in Computer Science from Jadavpur University, Kolkata, India and Netaji Subhas University, Kolkata, India in 2005 and 2011 respectively. He has published three research monographs and over 45 articles in international journals and conference proceedings.
Caracteristici
Presents the latest research on hierarchical deep learning for sentiment analysis Displays a mathematical abstraction of the sentiment analysis model in a very lucid manner Proposes a sentiment analysis model that can be applied to any social blog dataset