VLSI and Hardware Implementations using Modern Machine Learning Methods
Editat de Sandeep Saini, Kusum Lata, G.R. Sinhaen Limba Engleză Paperback – 7 oct 2024
Features:
- Provides the details of state-of-the-art machine learning methods used in VLSI design
- Discusses hardware implementation and device modeling pertaining to machine learning algorithms
- Explores machine learning for various VLSI architectures and reconfigurable computing
- Illustrates the latest techniques for device size and feature optimization
- Highlights the latest case studies and reviews of the methods used for hardware implementation
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 315.57 lei 43-57 zile | |
CRC Press – 7 oct 2024 | 315.57 lei 43-57 zile | |
Hardback (1) | 920.43 lei 43-57 zile | |
CRC Press – 31 dec 2021 | 920.43 lei 43-57 zile |
Preț: 315.57 lei
Preț vechi: 358.22 lei
-12% Nou
Puncte Express: 473
Preț estimativ în valută:
60.41€ • 62.13$ • 50.12£
60.41€ • 62.13$ • 50.12£
Carte tipărită la comandă
Livrare economică 17 februarie-03 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781032061726
ISBN-10: 1032061723
Pagini: 328
Ilustrații: 238
Dimensiuni: 156 x 234 mm
Greutate: 0.6 kg
Ediția:1
Editura: CRC Press
Colecția CRC Press
Locul publicării:Boca Raton, United States
ISBN-10: 1032061723
Pagini: 328
Ilustrații: 238
Dimensiuni: 156 x 234 mm
Greutate: 0.6 kg
Ediția:1
Editura: CRC Press
Colecția CRC Press
Locul publicării:Boca Raton, United States
Public țintă
AcademicCuprins
1. VLSI and Hardware Implementation Using Machine Learning Methods: A Systematic Literature Review. 2. Machine Learning for Testing of VLSI Circuit. 3. Online Checkers to Detect Hardware Trojans in AES Hardware Accelerators. 4. Machine Learning Methods for Hardware Security. 5. Application Driven Fault Identification in NoC Designs. 6. Online Test Derived from Binary Neural Network for Critical Autonomous Automotive Hardware. 7. Applications of Machine Learning in VLSI Design. 8. An Overview of High-Performance Computing Techniques Applied to Image Processing. 9. Machine Learning Algorithms for Semiconductor Device Modeling. 10. Securing IoT-Based Microservices Using Artificial Intelligence. 11. Applications of the Approximate Computing on ML Architecture. 12. Hardware Realization of Reinforcement Learning Algorithms for Edge Devices. 13. Deep Learning Techniques for Side-Channel Analysis. 14. Machine Learning in Hardware Security of IoT Nodes. 15. Integrated Photonics for Artificial Intelligence Applications.
Descriere
This book aims to provide the latest machine learning based methods, algorithms, architectures, and frameworks designed for VLSI design with focus on digital, analog and mixed-signal design techniques, device modeling, physical design, hardware implementation, testability, reconfigurable design, synthesis and verification, and related areas.