Wave Propagation in Viscoelastic and Poroelastic Continua: A Boundary Element Approach: Lecture Notes in Applied and Computational Mechanics, cartea 2
Autor Martin Schanzen Limba Engleză Hardback – 8 mai 2001
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 621.99 lei 43-57 zile | |
Springer Berlin, Heidelberg – 3 dec 2010 | 621.99 lei 43-57 zile | |
Hardback (1) | 560.79 lei 17-23 zile | +49.42 lei 5-11 zile |
Springer Berlin, Heidelberg – 8 mai 2001 | 560.79 lei 17-23 zile | +49.42 lei 5-11 zile |
Din seria Lecture Notes in Applied and Computational Mechanics
- Preț: 489.86 lei
- 18% Preț: 987.68 lei
- 18% Preț: 1097.47 lei
- 18% Preț: 936.81 lei
- 18% Preț: 928.95 lei
- Preț: 641.31 lei
- 15% Preț: 630.64 lei
- 18% Preț: 937.43 lei
- 18% Preț: 938.22 lei
- 15% Preț: 636.73 lei
- 18% Preț: 1199.70 lei
- 18% Preț: 937.13 lei
- 18% Preț: 935.12 lei
- 18% Preț: 929.69 lei
- 18% Preț: 930.30 lei
- 15% Preț: 631.45 lei
- 18% Preț: 1209.59 lei
- 18% Preț: 761.95 lei
- 18% Preț: 1197.04 lei
- 15% Preț: 630.01 lei
- 18% Preț: 936.95 lei
- 15% Preț: 627.93 lei
- 15% Preț: 632.73 lei
- 18% Preț: 925.84 lei
- 18% Preț: 1211.60 lei
- 18% Preț: 934.64 lei
- 15% Preț: 627.93 lei
Preț: 560.79 lei
Preț vechi: 700.99 lei
-20% Nou
Puncte Express: 841
Preț estimativ în valută:
107.32€ • 111.48$ • 89.15£
107.32€ • 111.48$ • 89.15£
Carte disponibilă
Livrare economică 08-14 ianuarie 25
Livrare express 27 decembrie 24 - 02 ianuarie 25 pentru 59.41 lei
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783540416326
ISBN-10: 3540416323
Pagini: 180
Ilustrații: X, 170 p.
Dimensiuni: 155 x 235 x 17 mm
Greutate: 0.42 kg
Ediția:2001
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Lecture Notes in Applied and Computational Mechanics
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3540416323
Pagini: 180
Ilustrații: X, 170 p.
Dimensiuni: 155 x 235 x 17 mm
Greutate: 0.42 kg
Ediția:2001
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Lecture Notes in Applied and Computational Mechanics
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
1. Introduction.- 2. Convolution quadrature method.- 2.1 Basic theory of the convolution quadrature method.- 2.2 Numerical tests.- 3. Viscoelastically supported Euler-Bernoulli beam.- 3.1 Integral equation for a beam resting on viscoelastic foundation.- 3.2 Numerical example.- 4. Time domain boundary element formulation.- 4.1 Integral equation for elastodynamics.- 4.2 Boundary element formulation for elastodynamics.- 4.3 Validation of proposed method: Wave propagation in a rod.- 5. Viscoelastodynamic boundary element formulation.- 5.1 Viscoelastic constitutive equation.- 5.2 Boundary integral equation.- 5.3 Boundary element formulation.- 5.4 Validation of the method and parameter study.- 6. Poroelastodynamic boundary element formulation.- 6.1 Biot’s theory of poroelasticity.- 6.2 Fundamental solutions.- 6.3 Poroelastic Boundary Integral Formulation.- 6.4 Numerical studies.- 7. Wave propagation.- 7.1 Wave propagation in poroelastic one-dimensional column.- 7.2 Waves in half space.- 8. Conclusions — Applications.- 8.1 Summary.- 8.2 Outlook on further applications.- A. Mathematic preliminaries.- A.1 Distributions or generalized functions.- A.2 Convolution integrals.- A.3 Laplace transform.- A.4 Linear multistep method.- B. BEM details.- B.1 Fundamental solutions.- B.1.1 Visco- and elastodynamic fundamental solutions.- B.1.2 Poroelastodynamic fundamental solutions.- B.2 “Classical” time domain BE formulation.- Notation Index.- References.
Textul de pe ultima copertă
In this book, a numerical method to treat wave propagation problems in poroelastic and viscoelastic media is developed and evaluated. The method of choice is the Boundary Element Method (BEM) since this method implicitly fulfills the Sommerfeld radiation condition. The crucial point in any time-dependent BEM formulation finding time-dependent fundamental solutions is overcome employing the Convolution Quadrature Method. This quadrature rule makes it possible to establish a boundary element time-stepping procedure based on the known Laplace domain fundamental solutions for viscoelastic and poroelastic continua. Using this method, e.g., tremors produced by earthquakes or machines can be pre-calculated and subsequent buildings prevented from such disturbances.
Caracteristici
A novel numerical approach to a class of problems with high theoretical and practical interest Particularly interesting for researchers working on the boundary element method and the mechanics of porous media Includes supplementary material: sn.pub/extras