What Is Integrability?: Springer Series in Nonlinear Dynamics
Editat de Vladimir E. Zakharov Contribuţii de F. Calogero, N. Ercolani, H. Flaschka, V.A. Marchenko, A.V. Mikhailov, A. C. Newell, E.I. Schulman, A.B. Shabat, E.D. Siggia, V.V. Sokolov, M. Tabor, A.P. Veselov, V.E. Zakharoven Limba Engleză Paperback – 27 apr 2012
Preț: 390.84 lei
Nou
Puncte Express: 586
Preț estimativ în valută:
74.80€ • 77.89$ • 63.21£
74.80€ • 77.89$ • 63.21£
Carte tipărită la comandă
Livrare economică 10-24 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642887055
ISBN-10: 3642887058
Pagini: 344
Ilustrații: XIV, 321 p. 2 illus.
Dimensiuni: 155 x 235 x 27 mm
Greutate: 0.48 kg
Ediția:Softcover reprint of the original 1st ed. 1991
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Springer Series in Nonlinear Dynamics
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642887058
Pagini: 344
Ilustrații: XIV, 321 p. 2 illus.
Dimensiuni: 155 x 235 x 27 mm
Greutate: 0.48 kg
Ediția:Softcover reprint of the original 1st ed. 1991
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Springer Series in Nonlinear Dynamics
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
Why Are Certain Nonlinear PDEs Both Widely Applicable and Integrable?.- Summary.- Addendum.- References.- Painlevé Property and Integrability.- 1. Background.- 2. Integrability.- 3. Riccati Example.- 4. Balances.- 5. Elliptic Example.- 6. Augmented Manifold.- 7. Argument for Integrability.- 8. Separability.- References.- Integrability.- 1. Integrability.- 2. Introduction to the Method.- 3. The Integrable Hénon-Heiles System: A New Result.- 4. A Mikhailov and Shabat Example.- 5. Some Comments on the KdV Hierarchy.- 6. Connection with Symmetries and Algebraic Structure.- 7. Integrating the Nonintegrable.- References.- The Symmetry Approach to Classification of Integrable Equations.- 1. Basic Definitions and Notations.- 2. The Burgers Type Equations.- 3. Canonical Conservation Laws.- 4. Integrable Equations.- Historical Remarks.- References.- Integrability of Nonlinear Systems and Perturbation Theory.- 1. Introduction.- 2. General Theory.- 3. Applications to Particular Systems.- Appendix I.- Appendix II.- Conclusion.- References.- What Is an Integrable Mapping?.- 1. Integrable Polynomial and Rational Mappings.- 2. Integrable Lagrangean Mappings with Discrete Time.- Appendix A.- Appendix B.- References.- The Cauchy Problem for the KdV Equation with Non-Decreasing Initial Data.- 1. Reflectionless Potentials.- 2. Closure of the Sets B(??2).- 3. The Inverse Problem.- References.