Cantitate/Preț
Produs

Writing Proofs in Analysis

Autor Jonathan M. Kane
en Limba Engleză Hardback – 6 iun 2016
This is a textbook on proof writing in the area of analysis, balancing a survey of the core concepts of mathematical proof with a tight, rigorous examination of the specific tools needed for an understanding of analysis. Instead of the standard "transition" approach to teaching proofs, wherein students are taught fundamentals of logic, given some common proof strategies such as mathematical induction, and presented with a series of well-written proofs to mimic, this textbook teaches what a student needs to be thinking about when trying to construct a proof. Covering the fundamentals of analysis sufficient for a typical beginning Real Analysis course, it never loses sight of the fact that its primary focus is about proof writing skills.

This book aims to give the student precise training in the writing of proofs by explaining exactly what elements make up a correct proof, how one goes about constructing an acceptable proof, and, by learning to recognize a correct proof, how to avoid writing incorrect proofs. To this end, all proofs presented in this text are preceded by detailed explanations describing the thought process one goes through when constructing the proof. Over 150 example proofs, templates, and axioms are presented alongside full-color diagrams to elucidate the topics at hand.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 41152 lei  38-44 zile
  Springer International Publishing – 30 mai 2018 41152 lei  38-44 zile
Hardback (1) 47402 lei  38-44 zile
  Springer International Publishing – 6 iun 2016 47402 lei  38-44 zile

Preț: 47402 lei

Preț vechi: 58521 lei
-19% Nou

Puncte Express: 711

Preț estimativ în valută:
9072 9451$ 7543£

Carte tipărită la comandă

Livrare economică 06-12 februarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783319309651
ISBN-10: 331930965X
Pagini: 288
Ilustrații: XX, 347 p. 79 illus., 75 illus. in color.
Dimensiuni: 155 x 235 x 22 mm
Greutate: 0.82 kg
Ediția:1st ed. 2016
Editura: Springer International Publishing
Colecția Springer
Locul publicării:Cham, Switzerland

Cuprins

What Are Proofs, And Why Do We Write Them?.- The Basics of Proofs.- Limits.- Continuity.- Derivatives.- Riemann Integrals.- Infinite Series.- Sequences of Functions.- Topology of the Real Line.- Metric Spaces​.

Recenzii

“This book is well written and so it is also very convenient as a textbook for a standard one-semester course in real analysis.” (Petr Gurka, zbMATH 1454.26001, 2021)
“This is a well-written book with definitions embedded in the text—these are easily identified by bold type throughout the work. The theorems and proofs are set apart from the text and appear in boxes that follow discussions that motivate them. … Summing Up: Recommended. Lower- and upper-division undergraduates; researchers and faculty.” (J. R. Burke, Choice, Vol. 54 (7), March, 2017)
“Its objective is to make the reader understand the thought processes behind the proofs. In this it succeeds admirable, and then book should be in every mathematical library, public and private. … The book is excellently produced with many coloured diagrams.” (P. S. Bullen, Mathematical Reviews, January, 2017)

“I think this is indeed a fabulous book for the kind of course I just suggested. I think that it will indeed serve as Kane projects it should, and the surviving student will truly know a good deal about writing a mathematical proof, in fact, about thinking about the problems and assertions beforehand and then going about the task of constructing the proof.” (Michael Berg, MAA Reviews, August, 2016)

Notă biografică

Jonathan Michael Kane is an emeritus professor of Mathematical and Computer Sciences at the University of Wisconsin – Whitewater and an honorary fellow of the Department of Mathematics at the University of Wisconsin – Madison. He has published papers in several complex variables, probability, algorithms, and the relationship between gender and culture in mathematics performance. He has taught dozens of courses in mathematics, statistics, actuarial mathematics, and computer science. Dr. Kane plays a major role in contest mathematics by chairing the American Invitational Mathematics Exam Committee, cofounding and coordinating the annual online Purple Comet! Math Meet, and teaching at the AwesomeMath summer program.

Textul de pe ultima copertă

This is a textbook on proof writing in the area of analysis, balancing a survey of the core concepts of mathematical proof with a tight, rigorous examination of the specific tools needed for an understanding of analysis. Instead of the standard "transition" approach to teaching proofs, wherein students are taught fundamentals of logic, given some common proof strategies such as mathematical induction, and presented with a series of well-written proofs to mimic, this textbook teaches what a student needs to be thinking about when trying to construct a proof. Covering the fundamentals of analysis sufficient for a typical beginning Real Analysis course, it never loses sight of the fact that its primary focus is about proof writing skills.

This book aims to give the student precise training in the writing of proofs by explaining exactly what elements make up a correct proof, how one goes about constructing an acceptable proof, and, by learning to recognize a correct proof, how to avoid writing incorrect proofs. To this end, all proofs presented in this text are preceded by detailed explanations describing the thought process one goes through when constructing the proof. Over 150 example proofs, templates, and axioms are presented alongside full-color diagrams to elucidate the topics at hand.

Caracteristici

Teaches how to write proofs by describing what students should be thinking about when faced with writing a proof Provides proof templates for proofs that follow the same general structure Blends topics of logic into discussions of proofs in the context where they are needed Thoroughly covers the concepts and theorems of introductory in Real Analysis including limits, continuity, differentiation, integration, infinite series, sequences of functions, topology of the real line, and metric spaces