Cantitate/Preț
Produs

Zinc Oxide - A Material for Micro- and Optoelectronic Applications: Proceedings of the NATO Advanced Research Workshop on Zinc Oxide as a Material for Micro- and Optoelectronic Applications, held in St. Petersburg, Russia, from 23 to 25 June 2004: NATO Science Series II: Mathematics, Physics and Chemistry, cartea 194

Editat de Norbert H. Nickel, Evgenii Terukov
en Limba Engleză Hardback – 18 aug 2005
Recently, a significant effort has been devoted to the investigation of ZnO as a suitable semiconductor for UV light-emitting diodes, lasers, and detectors and hetero-substrates for GaN. Research is driven not only by the technological requirements of state-of-the-art applications but also by the lack of a fundamental understanding of growth processes, the role of intrinsic defects and dopants, and the properties of hydrogen. The NATO Advanced Research Workshop on “Zinc oxide as a material for micro- and optoelectronic applications”, held from June 23 to June 25 2004 in St. Petersburg, Russia, was organized accordingly and started with the growth of ZnO. A variety of growth methods for bulk and layer growth were discussed. These techniques comprised growth methods such as closed space vapor transport (CSVT), metal-organic chemical vapor deposition, reactive ion sputtering, and pulsed laser deposition. From a structural point of view using these growth techniques ZnO can be fabricated ranging from single crystalline bulk material to polycrystalline ZnO and nanowhiskers. A major aspect of the ZnO growth is doping. n-type doping is relatively easy to accomplish with elements such al Al or Ga. At room temperature single crystal ZnO exhibits a resistivity of about 0. 3 -cm, an electron mobility of 2 17 -3 225 cm /Vs, and a carrier concentration of 10 cm . In n-type ZnO two shallow donors are observable with activation energies of 30 – 40 meV and 60 – 70 meV.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 92686 lei  6-8 săpt.
  SPRINGER NETHERLANDS – 16 aug 2005 92686 lei  6-8 săpt.
Hardback (1) 93278 lei  6-8 săpt.
  SPRINGER NETHERLANDS – 18 aug 2005 93278 lei  6-8 săpt.

Din seria NATO Science Series II: Mathematics, Physics and Chemistry

Preț: 93278 lei

Preț vechi: 113753 lei
-18% Nou

Puncte Express: 1399

Preț estimativ în valută:
17857 18562$ 14806£

Carte tipărită la comandă

Livrare economică 07-21 februarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9781402034732
ISBN-10: 1402034733
Pagini: 256
Ilustrații: XVI, 240 p.
Dimensiuni: 156 x 232 x 19 mm
Greutate: 0.54 kg
Ediția:2005
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria NATO Science Series II: Mathematics, Physics and Chemistry

Locul publicării:Dordrecht, Netherlands

Public țintă

Research

Cuprins

ZnO Bulk and Layer Growth.- The Scope of Zinc Oxide Bulk Growth.- Growth Mechanism of ZnO Layers.- Kinetics of High-Temperature Defect Formation in ZnO in the Stream of Oxygen Radicals.- Electrical, Optical, and Structural Properties.- Electrical Properties of ZnO.- Electrical Properties of ZnO Thin Films and Single Crystals.- Structure, Morphology, and Photoluminescence of ZnO Films.- Optics and Spectroscopy of Point Defects in ZnO.- Whispering Gallery Modes in Hexagonal Zinc Oxide Micro- and Nanocrystals.- Properties of Dislocations in Epitaxial ZnO Layers Analyzed by Transmission Electron Microscopy.- Role of Hydrogen.- Muon Spin Rotation Measurements on Zinc Oxide.- Hydrogen Donors in Zinc Oxide.- Hydrogen-Related Defects in ZnO Studied by IR Absorption Spectroscopy.- Influence of the Hydrogen Concentration on H Bonding in Zinc Oxide.- Fundamental Properties.- Valence Band Ordering and Magneto-Optical Properties of Free and Bound Excitons in ZnO.- Fundamental Optical Spectra and Electronic Structure of ZnO Crystals.- Photo-Induced Localized Lattice Vibrations in ZnO Doped with 3d Transition Metal Impurities.- Device Applications.- ZnO Window Layers for Solar Cells.- ZnO/AlGaN Ultraviolet Light Emitting Diodes.- ZnO Transparent Thin-Film Transistor Device Physics.- Zinc Oxide Thin-Film Transistors.

Caracteristici

Latest research results on the fabrication and fundamental understanding of ZnO and ZnO based devices ZnO bulk and layer growth of undoped and p-type doped material, influence of impurities (oxygen, hydrogen, transition metals) on electrical and optical properties New emerging applications such as transparent electronics