4th Neural Computation and Psychology Workshop, London, 9–11 April 1997: Connectionist Representations: Perspectives in Neural Computing
Editat de John A: Bullinaria, David W. Glasspool, George Houghtonen Limba Engleză Paperback – 29 oct 1997
Din seria Perspectives in Neural Computing
- 20% Preț: 933.82 lei
- 20% Preț: 616.86 lei
- 20% Preț: 1097.74 lei
- 20% Preț: 934.75 lei
- 20% Preț: 614.22 lei
- 20% Preț: 583.12 lei
- 20% Preț: 936.78 lei
- 20% Preț: 310.12 lei
- 20% Preț: 321.53 lei
- 20% Preț: 605.78 lei
- 20% Preț: 614.36 lei
- 20% Preț: 612.68 lei
- 20% Preț: 613.17 lei
- 20% Preț: 607.64 lei
- 15% Preț: 609.58 lei
- 20% Preț: 312.39 lei
- 20% Preț: 309.33 lei
- 20% Preț: 609.11 lei
- 20% Preț: 398.07 lei
- 20% Preț: 612.35 lei
- 18% Preț: 744.81 lei
- 20% Preț: 309.29 lei
- 20% Preț: 616.38 lei
- 20% Preț: 614.04 lei
- 20% Preț: 618.27 lei
- 20% Preț: 614.52 lei
- 20% Preț: 317.59 lei
- 20% Preț: 316.66 lei
- 20% Preț: 318.26 lei
Preț: 317.69 lei
Preț vechi: 397.11 lei
-20% Nou
Puncte Express: 477
Preț estimativ în valută:
60.82€ • 66.29$ • 51.14£
60.82€ • 66.29$ • 51.14£
Carte tipărită la comandă
Livrare economică 17-31 decembrie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783540762089
ISBN-10: 3540762086
Pagini: 360
Ilustrații: XIII, 343 p. 37 illus.
Dimensiuni: 155 x 235 x 19 mm
Greutate: 0.5 kg
Ediția:1st Edition.
Editura: SPRINGER LONDON
Colecția Springer
Seria Perspectives in Neural Computing
Locul publicării:London, United Kingdom
ISBN-10: 3540762086
Pagini: 360
Ilustrații: XIII, 343 p. 37 illus.
Dimensiuni: 155 x 235 x 19 mm
Greutate: 0.5 kg
Ediția:1st Edition.
Editura: SPRINGER LONDON
Colecția Springer
Seria Perspectives in Neural Computing
Locul publicării:London, United Kingdom
Public țintă
ResearchCuprins
Representational Issues for Connectionist Psychological Models.- Some Advantages of Localist over Distributed Representations.- Distributed Representations in Radial Basis Function Networks.- A Unified Framework For Connectionist Models.- Separability is a Learner’s Best Friend.- A Generative Learning Algorithm that Uses Structural Knowledge of the Input Domain Yields a Better Multi-Layer Perceptron.- Improving Learning and Generalization in Neural Networks Through the Acquisition of Multiple Related Functions.- Representation in Vision and Audition.- Objective Functions for Topography: A Comparison of Optimal Maps.- Testing Principal Component Representations for Faces.- Selection for Object Identification: Modelling Emergent Attentional Processes in Normality and Pathology.- Extracting Features from the Short-Term Time Structure of Cochlear Filtered Sound.- Representation in Working Memory and Attention.- Representational Issues in Neural Systems: Example from a Neural Network Model of Set-Shifting Paradigm Experiments.- Models of Coupled Anterior Working Memories for Frontal Tasks.- A Neurobiologically Inspired Model of Working Memory Based on Neuronal Synchrony and Rhythmicity.- Neural Networks and the Emergence of Consciousness.- Selective Memory Loss in Aphasics: An Insight from Pseudo-Recurrent Connectionist Networks.- Lexical/Semantic Representations.- Extracting Semantic Representations from Large Text Corpora.- Modelling Lexical Decision Using Corpus Derived Semantic Representations in a Connectionist Network.- Semantic Representation and Priming in a Self-Organising Lexicon.- Distributed Representations and the Bilingual Lexicon: One Store or Two?.- Recognising Embedded Words in Connected Speech: Context and Competition.- The Representation of SerialOrder.- Dynamic Representation of Structural Constraints in Models of Serial Behaviour.- Representations of Serial Order.- To Repeat or Not to Repeat: The Time Course of Response Suppression in Sequential Behaviour.- A Localist Implementation of the Primacy Model of Immediate Serial Recall.- Connectionist Symbol Processing with Causal Representations.- Author Index.