Self-Organising Neural Networks: Independent Component Analysis and Blind Source Separation: Perspectives in Neural Computing
Autor Mark Girolamien Limba Engleză Paperback – 25 iun 1999
Din seria Perspectives in Neural Computing
- 20% Preț: 966.66 lei
- 20% Preț: 638.07 lei
- 20% Preț: 1135.60 lei
- 20% Preț: 967.62 lei
- 20% Preț: 635.32 lei
- 20% Preț: 583.12 lei
- 20% Preț: 969.72 lei
- 20% Preț: 320.71 lei
- 20% Preț: 332.50 lei
- 20% Preț: 626.59 lei
- 20% Preț: 635.46 lei
- 20% Preț: 328.76 lei
- 20% Preț: 634.68 lei
- 20% Preț: 628.52 lei
- 15% Preț: 630.97 lei
- 20% Preț: 323.28 lei
- 20% Preț: 319.89 lei
- 20% Preț: 630.47 lei
- 20% Preț: 398.07 lei
- 20% Preț: 633.39 lei
- 18% Preț: 770.43 lei
- 20% Preț: 320.06 lei
- 20% Preț: 637.57 lei
- 20% Preț: 635.15 lei
- 20% Preț: 639.53 lei
- 20% Preț: 635.64 lei
- 20% Preț: 328.45 lei
- 20% Preț: 327.47 lei
- 20% Preț: 329.13 lei
Preț: 633.72 lei
Preț vechi: 792.15 lei
-20% Nou
Puncte Express: 951
Preț estimativ în valută:
121.28€ • 125.98$ • 100.74£
121.28€ • 125.98$ • 100.74£
Carte tipărită la comandă
Livrare economică 03-17 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781852330668
ISBN-10: 185233066X
Pagini: 284
Ilustrații: IX, 271 p. 9 illus.
Dimensiuni: 155 x 235 x 15 mm
Greutate: 0.45 kg
Ediția:1st Edition.
Editura: SPRINGER LONDON
Colecția Springer
Seria Perspectives in Neural Computing
Locul publicării:London, United Kingdom
ISBN-10: 185233066X
Pagini: 284
Ilustrații: IX, 271 p. 9 illus.
Dimensiuni: 155 x 235 x 15 mm
Greutate: 0.45 kg
Ediția:1st Edition.
Editura: SPRINGER LONDON
Colecția Springer
Seria Perspectives in Neural Computing
Locul publicării:London, United Kingdom
Public țintă
ResearchCuprins
1. Introduction.- 1.1 Self-Organisation and Blind Signal Processing.- 1.2 Outline of Book Chapters.- 2. Background to Blind Source Separation.- 2.1 Problem Formulation.- 2.2 Entropy and Information.- 2.3 A Contrast Function for ICA.- 2.4 Cumulant Expansions of Probability Densities and Higher Order Statistics.- 2.5 Gradient Based Function Optimisation.- 3. Fourth Order Cumulant Based Blind Source Separation.- 3.1 Early Algorithms and Techniques.- 3.2 The Method of Contrast Minimisation.- 3.3 Adaptive Source Separation Methods.- 3.4 Conclusions.- 4. Self-Organising Neural Networks.- 4.1 Linear Self-Organising Neural Networks.- 4.2 Non-Linear Self-Organising Neural Networks.- 4.3 Conclusions.- 5. The Non-Linear PCA Algorithm and Blind Source Separation.- 5.1 Introduction.- 5.2 Non-Linear PCA Algorithm and Source Separation.- 5.3 Non-Linear PCA Algorithm Cost Function.- 5.4 Non-Linear PCA Algorithm Activation Function.- 5.5 Conclusions.- 6. Non-Linear Feature Extraction and Blind Source Separation.- 6.1 Introduction.- 6.2 Structure Identification in Multivariate Data.- 6.3 Neural Network Implementation of Exploratory Projection Pursuit.- 6.4 Neural Exploratory Projection Pursuit and Blind Source Separation.- 6.5 Kurtosis Extrema.- 6.6 Finding Interesting and Independent Directions.- 6.7 Finding Multiple Interesting and Independent Directions Using Symmetric Feedback and Adaptive Whitening.- 6.8 Finding Multiple Interesting and Independent Directions Using Hierarchic Feedback and Adaptive Whitening.- 6.9 Simulations.- 6.10 Adaptive BSS Using a Deflationary EPP Network.- 6.11 Conclusions.- 7. Information Theoretic Non-Linear Feature Extraction And Blind Source Separation.- 7.1 Introduction.- 7.2 Information Theoretic Indices for EPP.- 7.3 Maximum Negentropy Learning.- 7.4 General Maximum Negentropy Learning.- 7.5 Stability Analysis of Generalised Algorithm.- 7.6 Simulation Results.- 7.7 Conclusions.- 8. Temporal Anti-Hebbian Learning.- 8.1 Introduction.- 8.2 Blind Source Separation of Convolutive Mixtures.- 8.3 Temporal Linear Anti-Hebbian Model.- 8.4 Comparative Simulation.- 8.5 Review of Existing Work on Adaptive Separation of Convolutive Mixtures.- 8.6 Maximum Likelihood Estimation and Source Separation.- 8.7 Temporal Anti-Hebbian Learning Based on Maximum Likelihood Estimation.- 8.8 Comparative Simulations Using Varying PDF Models.- 8.9 Conclusions.- 9. Applications.- 9.1 Introduction.- 9.2 Industrial Applications.- 9.3 Biomedical Applications.- 9.4 ICA: A Data Mining Tool.- 9.5 Experimental Results.- 9.6 Conclusions.- References.