Self-Organising Neural Networks: Independent Component Analysis and Blind Source Separation: Perspectives in Neural Computing
Autor Mark Girolamien Limba Engleză Paperback – 25 iun 1999
Din seria Perspectives in Neural Computing
- 20% Preț: 986.66 lei
- 20% Preț: 651.23 lei
- 20% Preț: 1159.10 lei
- 20% Preț: 987.65 lei
- 20% Preț: 648.44 lei
- 20% Preț: 583.12 lei
- 20% Preț: 989.79 lei
- 20% Preț: 327.29 lei
- 20% Preț: 339.34 lei
- 20% Preț: 639.52 lei
- 20% Preț: 648.59 lei
- 20% Preț: 335.52 lei
- 20% Preț: 647.79 lei
- 20% Preț: 641.49 lei
- 15% Preț: 643.99 lei
- 20% Preț: 329.91 lei
- 20% Preț: 326.46 lei
- 20% Preț: 643.50 lei
- 20% Preț: 398.07 lei
- 20% Preț: 646.47 lei
- 18% Preț: 786.36 lei
- 20% Preț: 326.64 lei
- 20% Preț: 650.73 lei
- 20% Preț: 648.26 lei
- 20% Preț: 652.73 lei
- 20% Preț: 648.76 lei
- 20% Preț: 335.18 lei
- 20% Preț: 334.20 lei
- 20% Preț: 335.88 lei
Preț: 646.80 lei
Preț vechi: 808.50 lei
-20% Nou
Puncte Express: 970
Preț estimativ în valută:
123.76€ • 129.57$ • 102.41£
123.76€ • 129.57$ • 102.41£
Carte tipărită la comandă
Livrare economică 05-19 aprilie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781852330668
ISBN-10: 185233066X
Pagini: 284
Ilustrații: IX, 271 p. 9 illus.
Dimensiuni: 155 x 235 x 15 mm
Greutate: 0.45 kg
Ediția:1st Edition.
Editura: SPRINGER LONDON
Colecția Springer
Seria Perspectives in Neural Computing
Locul publicării:London, United Kingdom
ISBN-10: 185233066X
Pagini: 284
Ilustrații: IX, 271 p. 9 illus.
Dimensiuni: 155 x 235 x 15 mm
Greutate: 0.45 kg
Ediția:1st Edition.
Editura: SPRINGER LONDON
Colecția Springer
Seria Perspectives in Neural Computing
Locul publicării:London, United Kingdom
Public țintă
ResearchCuprins
1. Introduction.- 1.1 Self-Organisation and Blind Signal Processing.- 1.2 Outline of Book Chapters.- 2. Background to Blind Source Separation.- 2.1 Problem Formulation.- 2.2 Entropy and Information.- 2.3 A Contrast Function for ICA.- 2.4 Cumulant Expansions of Probability Densities and Higher Order Statistics.- 2.5 Gradient Based Function Optimisation.- 3. Fourth Order Cumulant Based Blind Source Separation.- 3.1 Early Algorithms and Techniques.- 3.2 The Method of Contrast Minimisation.- 3.3 Adaptive Source Separation Methods.- 3.4 Conclusions.- 4. Self-Organising Neural Networks.- 4.1 Linear Self-Organising Neural Networks.- 4.2 Non-Linear Self-Organising Neural Networks.- 4.3 Conclusions.- 5. The Non-Linear PCA Algorithm and Blind Source Separation.- 5.1 Introduction.- 5.2 Non-Linear PCA Algorithm and Source Separation.- 5.3 Non-Linear PCA Algorithm Cost Function.- 5.4 Non-Linear PCA Algorithm Activation Function.- 5.5 Conclusions.- 6. Non-Linear Feature Extraction and Blind Source Separation.- 6.1 Introduction.- 6.2 Structure Identification in Multivariate Data.- 6.3 Neural Network Implementation of Exploratory Projection Pursuit.- 6.4 Neural Exploratory Projection Pursuit and Blind Source Separation.- 6.5 Kurtosis Extrema.- 6.6 Finding Interesting and Independent Directions.- 6.7 Finding Multiple Interesting and Independent Directions Using Symmetric Feedback and Adaptive Whitening.- 6.8 Finding Multiple Interesting and Independent Directions Using Hierarchic Feedback and Adaptive Whitening.- 6.9 Simulations.- 6.10 Adaptive BSS Using a Deflationary EPP Network.- 6.11 Conclusions.- 7. Information Theoretic Non-Linear Feature Extraction And Blind Source Separation.- 7.1 Introduction.- 7.2 Information Theoretic Indices for EPP.- 7.3 Maximum Negentropy Learning.- 7.4 General Maximum Negentropy Learning.- 7.5 Stability Analysis of Generalised Algorithm.- 7.6 Simulation Results.- 7.7 Conclusions.- 8. Temporal Anti-Hebbian Learning.- 8.1 Introduction.- 8.2 Blind Source Separation of Convolutive Mixtures.- 8.3 Temporal Linear Anti-Hebbian Model.- 8.4 Comparative Simulation.- 8.5 Review of Existing Work on Adaptive Separation of Convolutive Mixtures.- 8.6 Maximum Likelihood Estimation and Source Separation.- 8.7 Temporal Anti-Hebbian Learning Based on Maximum Likelihood Estimation.- 8.8 Comparative Simulations Using Varying PDF Models.- 8.9 Conclusions.- 9. Applications.- 9.1 Introduction.- 9.2 Industrial Applications.- 9.3 Biomedical Applications.- 9.4 ICA: A Data Mining Tool.- 9.5 Experimental Results.- 9.6 Conclusions.- References.