Cantitate/Preț
Produs

Dynamic Neural Field Theory for Motion Perception: The Springer International Series in Engineering and Computer Science, cartea 469

Autor Martin A. Giese
en Limba Engleză Hardback – 31 oct 1998
Dynamic Neural Field Theory for Motion Perception provides a new theoretical framework that permits a systematic analysis of the dynamic properties of motion perception.
This framework uses dynamic neural fields as a key mathematical concept. The author demonstrates how neural fields can be applied for the analysis of perceptual phenomena and its underlying neural processes. Also, similar principles form a basis for the design of computer vision systems as well as the design of artificially behaving systems. The book discusses in detail the application of this theoretical approach to motion perception and will be of great interest to researchers in vision science, psychophysics, and biological visual systems.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 63959 lei  6-8 săpt.
  Springer Us – 12 oct 2012 63959 lei  6-8 săpt.
Hardback (1) 64611 lei  6-8 săpt.
  Springer Us – 31 oct 1998 64611 lei  6-8 săpt.

Din seria The Springer International Series in Engineering and Computer Science

Preț: 64611 lei

Preț vechi: 76013 lei
-15% Nou

Puncte Express: 969

Preț estimativ în valută:
12364 12925$ 10448£

Carte tipărită la comandă

Livrare economică 06-20 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780792383000
ISBN-10: 0792383001
Pagini: 257
Ilustrații: XIX, 257 p.
Dimensiuni: 155 x 235 x 18 mm
Greutate: 0.58 kg
Ediția:1999
Editura: Springer Us
Colecția Springer
Seria The Springer International Series in Engineering and Computer Science

Locul publicării:New York, NY, United States

Public țintă

Research

Cuprins

1 Introduction.- I Basic Concepts.- 2 Visual perception of motion.- 3 Basic principles of the dynamic approach.- 4 Dynamic neural fields.- II Model for Motion Perception.- 5 Dynamic neural field model for motion perception.- 6 Necessity of the concepts: Model for the motion quartet.- 7 Sufficiency of the concepts: Field model for 2D-motion perception.- 8 Relationships: neural fields and computational algorithms.- 9 Identification of field models from neurophysiological data.- III Other Applications of Neural Fields.- 10 Neural field model for the motor planning of eye movements.- 11 Technical applications of neural fields.- 12 Discussion.- Appendices.- A Appendix of chapter 3.- A.1 Relationship: Eye-Position and Relative Phase Dynamics.- B Appendix of chapter 6.- B.1 Geometry Dependence of Feed-Forward Input.- B.2 Stochastic Bistable Dynamics.- B.3 Parameters of the Model for the Motion Quartet.- C Appendix of chapter 7.- C.1 Properties of the Interaction Function.- C.2 One-Dimensional Neural Field Model for Motion Direction.- C.3 Parameters of the Neural Field Model.- D Appendix of chapter 8.- D.1 Proof of Theorem 4.- D.2 Proof of Lemma 1.- D.3 Proof of Theorem 5.- E Appendix of chapter 9.- E.2 Least Squares Estimation of Kernel Functions.- E.3 Equivalent Feed-Forward System for a Linear Threshold.- F Appendix of chapter 11.- F. 1 Transformation between Robot and World Coordinates.- F.2 Transformations between the Perceptive Spaces.- F.3 Learning of the Parameters of the Approximation Dynamics.- List of Symbols.