Cantitate/Preț
Produs

A Tour of Data Science: Learn R and Python in Parallel: Chapman & Hall/CRC Data Science Series

Autor Nailong Zhang
en Limba Engleză Paperback – 12 noi 2020
A Tour of Data Science: Learn R and Python in Parallel covers the fundamentals of data science, including programming, statistics, optimization, and machine learning in a single short book. It does not cover everything, but rather, teaches the key concepts and topics in Data Science. It also covers two of the most popular programming languages used in Data Science, R and Python, in one source.
Key features:
  • Allows you to learn R and Python in parallel
  • Cover statistics, programming, optimization and predictive modelling, and the popular data manipulation tools – data.table and pandas
  • Provides a concise and accessible presentation
  • Includes machine learning algorithms implemented from scratch, linear regression, lasso, ridge, logistic regression, gradient boosting trees, etc.
Appealing to data scientists, statisticians, quantitative analysts, and others who want to learn programming with R and Python from a data science perspective.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 27942 lei  6-8 săpt.
  CRC Press – 12 noi 2020 27942 lei  6-8 săpt.
Hardback (1) 72843 lei  6-8 săpt.
  CRC Press – 12 noi 2020 72843 lei  6-8 săpt.

Din seria Chapman & Hall/CRC Data Science Series

Preț: 27942 lei

Preț vechi: 40544 lei
-31% Nou

Puncte Express: 419

Preț estimativ în valută:
5348 5642$ 4457£

Carte tipărită la comandă

Livrare economică 02-16 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780367895860
ISBN-10: 0367895862
Pagini: 216
Ilustrații: 4 Tables, black and white; 25 Illustrations, black and white
Dimensiuni: 178 x 254 x 14 mm
Greutate: 0.41 kg
Ediția:1
Editura: CRC Press
Colecția Chapman and Hall/CRC
Seria Chapman & Hall/CRC Data Science Series


Public țintă

Professional Practice & Development

Cuprins

Assumptions about the reader’s background
Book overview 
Introduction to R/Python Programming 
Calculator 

Variable and Type
Functions 
Control flows
Some built-in data structures 
Revisit of variables 
Object-oriented programming (OOP) in R/Python 
Miscellaneous 

More on R/Python Programming 
Work with R/Python scripts 
Debugging in R/Python 
Benchmarking 
Vectorization 
Embarrassingly parallelism in R/Python 
Evaluation strategy
Speed up with C/C++ in R/Python
A first impression of functional programming Miscellaneous 


data.table and pandas
SQL 
Get started with data.table and pandas 
Indexing & selecting data 
Add/Remove/Update
Group by 
Join 
Random Variables, Distributions & Linear Regression 
A refresher on distributions 
Inversion sampling & rejection sampling 
Joint distribution & copula 
Fit a distribution 
Confidence interval
Hypothesis testing 
Basics of linear regression 
Ridge regression 
Optimization in Practice
Convexity 
Gradient descent 
Root-finding 
General purpose minimization tools in R/Python 
Linear programming 
Miscellaneous 

Machine Learning - A gentle introduction 
Supervised learning 
Gradient boosting machine 
Unsupervised learning 
Reinforcement learning 
Deep Q-Networks 
Computational differentiation 
Miscellaneous 

Notă biografică

Nailong Zhang is lead Data Scientist at Mass Mutual Life Insurance Company.

Descriere

This book covers the fundamentals of data science, including programming, statistics, optimization, and machine learning in a single and short book. It does not cover everything, but instead, teaches the key concepts and topics. It also covers two of the most popular programming languages used in Data Science, R and Python, in one source.