A Tour of Data Science: Learn R and Python in Parallel: Chapman & Hall/CRC Data Science Series
Autor Nailong Zhangen Limba Engleză Hardback – 12 noi 2020
Key features:
- Allows you to learn R and Python in parallel
- Cover statistics, programming, optimization and predictive modelling, and the popular data manipulation tools – data.table and pandas
- Provides a concise and accessible presentation
- Includes machine learning algorithms implemented from scratch, linear regression, lasso, ridge, logistic regression, gradient boosting trees, etc.
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 380.93 lei 6-8 săpt. | |
CRC Press – 12 noi 2020 | 380.93 lei 6-8 săpt. | |
Hardback (1) | 850.63 lei 3-5 săpt. | +28.55 lei 6-12 zile |
CRC Press – 12 noi 2020 | 850.63 lei 3-5 săpt. | +28.55 lei 6-12 zile |
Din seria Chapman & Hall/CRC Data Science Series
- 8% Preț: 404.37 lei
- Preț: 386.75 lei
- 20% Preț: 246.86 lei
- 8% Preț: 389.00 lei
- 20% Preț: 289.32 lei
- 9% Preț: 594.74 lei
- 20% Preț: 285.16 lei
- Preț: 389.70 lei
- Preț: 389.66 lei
- 8% Preț: 404.37 lei
- 20% Preț: 516.00 lei
- 20% Preț: 305.38 lei
- 20% Preț: 283.90 lei
- Preț: 326.56 lei
- 20% Preț: 520.89 lei
- Preț: 364.40 lei
- 20% Preț: 366.96 lei
- 8% Preț: 393.86 lei
- 20% Preț: 324.37 lei
- 8% Preț: 548.14 lei
- 20% Preț: 397.75 lei
- 20% Preț: 332.19 lei
- 8% Preț: 428.25 lei
- 20% Preț: 390.16 lei
- 9% Preț: 771.25 lei
- 20% Preț: 363.35 lei
- 20% Preț: 380.93 lei
- 20% Preț: 400.41 lei
- 20% Preț: 363.44 lei
- 20% Preț: 361.44 lei
- 20% Preț: 447.24 lei
- 20% Preț: 382.42 lei
- 8% Preț: 411.42 lei
- 30% Preț: 444.19 lei
- 8% Preț: 394.44 lei
- 20% Preț: 357.74 lei
- 8% Preț: 544.47 lei
- 31% Preț: 650.51 lei
Preț: 850.63 lei
Preț vechi: 1063.28 lei
-20% Nou
Puncte Express: 1276
Preț estimativ în valută:
162.85€ • 169.27$ • 135.02£
162.85€ • 169.27$ • 135.02£
Carte disponibilă
Livrare economică 16-30 ianuarie 25
Livrare express 01-07 ianuarie 25 pentru 38.54 lei
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780367897062
ISBN-10: 0367897067
Pagini: 216
Ilustrații: 4 Tables, black and white; 25 Illustrations, black and white
Dimensiuni: 178 x 254 x 14 mm
Greutate: 0.74 kg
Ediția:1
Editura: CRC Press
Colecția Chapman and Hall/CRC
Seria Chapman & Hall/CRC Data Science Series
ISBN-10: 0367897067
Pagini: 216
Ilustrații: 4 Tables, black and white; 25 Illustrations, black and white
Dimensiuni: 178 x 254 x 14 mm
Greutate: 0.74 kg
Ediția:1
Editura: CRC Press
Colecția Chapman and Hall/CRC
Seria Chapman & Hall/CRC Data Science Series
Public țintă
Professional Practice & DevelopmentCuprins
Assumptions about the reader’s background
Book overview
Introduction to R/Python Programming
Calculator
Variable and Type
Functions
Control flows
Some built-in data structures
Revisit of variables
Object-oriented programming (OOP) in R/Python
Miscellaneous
More on R/Python Programming
Work with R/Python scripts
Debugging in R/Python
Benchmarking
Vectorization
Embarrassingly parallelism in R/Python
Evaluation strategy
Speed up with C/C++ in R/Python
A first impression of functional programming Miscellaneous
data.table and pandas
SQL
Get started with data.table and pandas
Indexing & selecting data
Add/Remove/Update
Group by
Join
Random Variables, Distributions & Linear Regression
A refresher on distributions
Inversion sampling & rejection sampling
Joint distribution & copula
Fit a distribution
Confidence interval
Hypothesis testing
Basics of linear regression
Ridge regression
Optimization in Practice
Convexity
Gradient descent
Root-finding
General purpose minimization tools in R/Python
Linear programming
Miscellaneous
Machine Learning - A gentle introduction
Supervised learning
Gradient boosting machine
Unsupervised learning
Reinforcement learning
Deep Q-Networks
Computational differentiation
Miscellaneous
Book overview
Introduction to R/Python Programming
Calculator
Variable and Type
Functions
Control flows
Some built-in data structures
Revisit of variables
Object-oriented programming (OOP) in R/Python
Miscellaneous
More on R/Python Programming
Work with R/Python scripts
Debugging in R/Python
Benchmarking
Vectorization
Embarrassingly parallelism in R/Python
Evaluation strategy
Speed up with C/C++ in R/Python
A first impression of functional programming Miscellaneous
data.table and pandas
SQL
Get started with data.table and pandas
Indexing & selecting data
Add/Remove/Update
Group by
Join
Random Variables, Distributions & Linear Regression
A refresher on distributions
Inversion sampling & rejection sampling
Joint distribution & copula
Fit a distribution
Confidence interval
Hypothesis testing
Basics of linear regression
Ridge regression
Optimization in Practice
Convexity
Gradient descent
Root-finding
General purpose minimization tools in R/Python
Linear programming
Miscellaneous
Machine Learning - A gentle introduction
Supervised learning
Gradient boosting machine
Unsupervised learning
Reinforcement learning
Deep Q-Networks
Computational differentiation
Miscellaneous
Notă biografică
Nailong Zhang is lead Data Scientist at Mass Mutual Life Insurance Company.
Descriere
This book covers the fundamentals of data science, including programming, statistics, optimization, and machine learning in a single and short book. It does not cover everything, but instead, teaches the key concepts and topics. It also covers two of the most popular programming languages used in Data Science, R and Python, in one source.