Cantitate/Preț
Produs

Additive Number Theory: Inverse Problems and the Geometry of Sumsets: Graduate Texts in Mathematics, cartea 165

Autor Melvyn B. Nathanson
en Limba Engleză Hardback – 22 aug 1996
Many classical problems in additive number theory are direct problems, in which one starts with a set A of natural numbers and an integer H -> 2, and tries to describe the structure of the sumset hA consisting of all sums of h elements of A. By contrast, in an inverse problem, one starts with a sumset hA, and attempts to describe the structure of the underlying set A. In recent years there has been ramrkable progress in the study of inverse problems for finite sets of integers. In particular, there are important and beautiful inverse theorems due to Freiman, Kneser, Plünnecke, Vosper, and others. This volume includes their results, and culminates with an elegant proof by Ruzsa of the deep theorem of Freiman that a finite set of integers with a small sumset must be a large subset of an n-dimensional arithmetic progression.
Citește tot Restrânge

Din seria Graduate Texts in Mathematics

Preț: 57516 lei

Preț vechi: 67666 lei
-15% Nou

Puncte Express: 863

Preț estimativ în valută:
11007 11543$ 9178£

Carte tipărită la comandă

Livrare economică 08-22 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780387946559
ISBN-10: 0387946551
Pagini: 296
Ilustrații: XIV, 295 p.
Dimensiuni: 156 x 234 x 20 mm
Greutate: 0.64 kg
Ediția:1996
Editura: Springer
Colecția Springer
Seria Graduate Texts in Mathematics

Locul publicării:New York, NY, United States

Public țintă

Graduate