Advanced Analytics and Learning on Temporal Data: 6th ECML PKDD Workshop, AALTD 2021, Bilbao, Spain, September 13, 2021, Revised Selected Papers: Lecture Notes in Computer Science, cartea 13114
Editat de Vincent Lemaire, Simon Malinowski, Anthony Bagnall, Thomas Guyet, Romain Tavenard, Georgiana Ifrimen Limba Engleză Paperback – dec 2021
The 12 full papers presented in this book were carefully reviewed and selected from 21 submissions. They focus on the following topics: Temporal Data Clustering; Classification of Univariate and Multivariate Time Series; Multivariate Time Series Co-clustering; Efficient Event Detection; Modeling Temporal Dependencies; Advanced Forecasting and Prediction Models; Cluster-based Forecasting; Explanation Methods for Time Series Classification; Multimodal Meta-Learning for Time Series Regression; and Multivariate Time Series Anomaly Detection.
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (2) | 329.76 lei 6-8 săpt. | |
Springer International Publishing – 16 dec 2020 | 329.76 lei 6-8 săpt. | |
Springer International Publishing – dec 2021 | 356.56 lei 6-8 săpt. |
Din seria Lecture Notes in Computer Science
- 20% Preț: 1061.55 lei
- 20% Preț: 340.32 lei
- 20% Preț: 341.95 lei
- 20% Preț: 453.32 lei
- 20% Preț: 238.01 lei
- 20% Preț: 340.32 lei
- 20% Preț: 438.69 lei
- Preț: 449.57 lei
- 20% Preț: 343.62 lei
- 20% Preț: 148.66 lei
- 20% Preț: 310.26 lei
- 20% Preț: 256.27 lei
- 20% Preț: 645.28 lei
- 17% Preț: 427.22 lei
- 20% Preț: 655.02 lei
- 20% Preț: 307.71 lei
- 20% Preț: 1075.26 lei
- 20% Preț: 591.51 lei
- Preț: 381.21 lei
- 20% Preț: 337.00 lei
- 15% Preț: 438.59 lei
- 20% Preț: 607.39 lei
- 20% Preț: 538.29 lei
- Preț: 389.48 lei
- 20% Preț: 326.98 lei
- 20% Preț: 1414.79 lei
- 20% Preț: 1024.44 lei
- 20% Preț: 579.30 lei
- 20% Preț: 575.48 lei
- 20% Preț: 583.40 lei
- 20% Preț: 763.23 lei
- 15% Preț: 580.46 lei
- 17% Preț: 360.19 lei
- 20% Preț: 504.57 lei
- 20% Preț: 172.69 lei
- 20% Preț: 369.12 lei
- 20% Preț: 353.50 lei
- 20% Preț: 585.88 lei
- Preț: 410.88 lei
- 20% Preț: 596.46 lei
- 20% Preț: 763.23 lei
- 20% Preț: 825.93 lei
- 20% Preț: 649.49 lei
- 20% Preț: 350.21 lei
- 20% Preț: 309.90 lei
- 20% Preț: 122.89 lei
Preț: 356.56 lei
Preț vechi: 445.69 lei
-20% Nou
Puncte Express: 535
Preț estimativ în valută:
68.23€ • 71.33$ • 57.66£
68.23€ • 71.33$ • 57.66£
Carte tipărită la comandă
Livrare economică 06-20 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783030914448
ISBN-10: 3030914445
Pagini: 195
Ilustrații: X, 195 p. 68 illus., 57 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.3 kg
Ediția:1st ed. 2021
Editura: Springer International Publishing
Colecția Springer
Seriile Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence
Locul publicării:Cham, Switzerland
ISBN-10: 3030914445
Pagini: 195
Ilustrații: X, 195 p. 68 illus., 57 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.3 kg
Ediția:1st ed. 2021
Editura: Springer International Publishing
Colecția Springer
Seriile Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence
Locul publicării:Cham, Switzerland
Cuprins
Oral Presentation.- Ranking by Aggregating Referees: Evaluating the Informativeness of Explanation Methods for Time Series Classification.- State Space approximation of Gaussian Processes for time-series forecasting.- Fast Channel Selection for Scalable Multivariate Time Series Classification.- Temporal phenotyping for characterisation of hospital care pathways of COVID patients.- A New Multivariate Time Series Co-clustering Non-Parametric Model Applied to Driving-Assistance Systems Validation.- TRAMESINO: Trainable Memory System for Intelligent Optimization of Road Traffic Control.- Detection of critical events in renewable energy production time series.- Poster Presentation.- Multimodal Meta-Learning for Time Series Regression.- Cluster-based Forecasting for Intermittent and Non-intermittent Time Series.- State discovery and prediction from multivariate sensor data.- RevDet: Robust and Memory Efficient Event Detection and Tracking in Large News Feeds.- From Univariate to Multivariate Time Series Anomaly Detection with Non-Local Information.