Advanced Machine Learning Approaches in Cancer Prognosis: Challenges and Applications: Intelligent Systems Reference Library, cartea 204
Editat de Janmenjoy Nayak, Margarita N. Favorskaya, Seema Jain, Bighnaraj Naik, Manohar Mishraen Limba Engleză Paperback – 31 mai 2022
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 975.71 lei 43-57 zile | |
Springer International Publishing – 31 mai 2022 | 975.71 lei 43-57 zile | |
Hardback (1) | 982.01 lei 43-57 zile | |
Springer International Publishing – 30 mai 2021 | 982.01 lei 43-57 zile |
Din seria Intelligent Systems Reference Library
- 20% Preț: 1050.57 lei
- 20% Preț: 1134.14 lei
- 20% Preț: 635.32 lei
- 20% Preț: 636.92 lei
- 20% Preț: 985.26 lei
- 20% Preț: 1031.34 lei
- 20% Preț: 1147.71 lei
- 20% Preț: 1141.21 lei
- 20% Preț: 815.83 lei
- 20% Preț: 969.90 lei
- 20% Preț: 1041.85 lei
- 20% Preț: 504.37 lei
- 20% Preț: 1881.03 lei
- 20% Preț: 970.55 lei
- 20% Preț: 638.38 lei
- 20% Preț: 632.91 lei
- 20% Preț: 646.79 lei
- 20% Preț: 634.04 lei
- 20% Preț: 640.80 lei
- 20% Preț: 636.78 lei
- 20% Preț: 635.00 lei
- 20% Preț: 644.70 lei
- 20% Preț: 643.55 lei
- 20% Preț: 1591.07 lei
- 20% Preț: 629.98 lei
- 20% Preț: 636.46 lei
- 20% Preț: 638.07 lei
- 20% Preț: 639.85 lei
- 20% Preț: 982.65 lei
- 20% Preț: 632.08 lei
- 20% Preț: 645.02 lei
- 20% Preț: 631.93 lei
- 20% Preț: 633.55 lei
- 20% Preț: 640.99 lei
Preț: 975.71 lei
Preț vechi: 1219.64 lei
-20% Nou
Puncte Express: 1464
Preț estimativ în valută:
186.73€ • 193.97$ • 155.11£
186.73€ • 193.97$ • 155.11£
Carte tipărită la comandă
Livrare economică 03-17 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783030719777
ISBN-10: 3030719774
Ilustrații: XX, 454 p. 236 illus., 168 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.66 kg
Ediția:1st ed. 2021
Editura: Springer International Publishing
Colecția Springer
Seria Intelligent Systems Reference Library
Locul publicării:Cham, Switzerland
ISBN-10: 3030719774
Ilustrații: XX, 454 p. 236 illus., 168 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.66 kg
Ediția:1st ed. 2021
Editura: Springer International Publishing
Colecția Springer
Seria Intelligent Systems Reference Library
Locul publicării:Cham, Switzerland
Cuprins
Advances in Machine Learning Approaches in Cancer Prognosis.- Data Analysis on Cancer Disease using Machine Learning Techniques.- Learning from multiple modalities of imaging data for cancer detection/diagnosis .- Neural Network for Lung Cancer diagnosis.- Improved Thyroid Disease Prediction Model Using Data Mining Techniques with Outlier Detection.- Automated Breast Cancer Diagnosis Based on Neural Network Algorithms.
Textul de pe ultima copertă
This book introduces a variety of advanced machine learning approaches covering the areas of neural networks, fuzzy logic, and hybrid intelligent systems for the determination and diagnosis of cancer. Moreover, the tactical solutions of machine learning have proved its vast range of significance and, provided novel solutions in the medical field for the diagnosis of disease. This book also explores the distinct deep learning approaches that are capable of yielding more accurate outcomes for the diagnosis of cancer. In addition to providing an overview of the emerging machine and deep learning approaches, it also enlightens an insight on how to evaluate the efficiency and appropriateness of such techniques and analysis of cancer data used in the cancer diagnosis. Therefore, this book focuses on the recent advancements in the machine learning and deep learning approaches used in the diagnosis of different types of cancer along with their research challenges and future directions for the targeted audience including scientists, experts, Ph.D. students, postdocs, and anyone interested in the subjects discussed.
Caracteristici
Discusses all types of cancer diseases information with their detection, solution, and prevention Presents advanced machine learning approaches spanning the areas of neural networks, fuzzy logic, connectionist systems, genetic algorithms, evolutionary computation, cellular automata, self-organizing systems, fuzzy systems, and hybrid intelligent systems for solving the cancer diseases Covers advanced methodologies, challenges, and solutions of diversified cancer-related issues