Advances in Data Mining - Theoretical Aspects and Applications: 7th Industrial Conference, ICDM 2007, Leipzig, Germany, July 14-18, 2007, Proceedings: Lecture Notes in Computer Science, cartea 4597
Editat de Petra Perneren Limba Engleză Paperback – 5 iul 2007
Din seria Lecture Notes in Computer Science
- 20% Preț: 1021.30 lei
- 20% Preț: 337.03 lei
- 20% Preț: 340.22 lei
- 20% Preț: 256.27 lei
- 20% Preț: 324.32 lei
- 20% Preț: 438.69 lei
- 20% Preț: 315.78 lei
- 20% Preț: 327.52 lei
- 20% Preț: 148.66 lei
- 20% Preț: 122.89 lei
- 20% Preț: 557.41 lei
- 20% Preț: 561.37 lei
- 15% Preț: 558.56 lei
- 20% Preț: 238.01 lei
- 20% Preț: 504.57 lei
- 20% Preț: 329.09 lei
- 20% Preț: 563.75 lei
- 20% Preț: 630.24 lei
- 20% Preț: 321.96 lei
- 20% Preț: 1361.10 lei
- 20% Preț: 310.26 lei
- 20% Preț: 607.39 lei
- Preț: 366.90 lei
- 20% Preț: 172.69 lei
- 20% Preț: 315.19 lei
- 20% Preț: 985.59 lei
- 20% Preț: 620.87 lei
- 20% Preț: 436.22 lei
- 20% Preț: 734.34 lei
- 20% Preț: 1034.49 lei
- 17% Preț: 360.19 lei
- 20% Preț: 309.90 lei
- 20% Preț: 573.92 lei
- 20% Preț: 301.95 lei
- 20% Preț: 307.71 lei
- 20% Preț: 369.12 lei
- 20% Preț: 327.52 lei
- 20% Preț: 794.65 lei
- 20% Preț: 569.16 lei
- Preț: 395.43 lei
- 20% Preț: 1138.26 lei
- 20% Preț: 734.34 lei
- 20% Preț: 315.78 lei
- 20% Preț: 330.70 lei
- 20% Preț: 538.29 lei
- 20% Preț: 326.98 lei
Preț: 341.96 lei
Preț vechi: 427.46 lei
-20% Nou
Puncte Express: 513
Preț estimativ în valută:
65.45€ • 69.04$ • 54.54£
65.45€ • 69.04$ • 54.54£
Carte tipărită la comandă
Livrare economică 02-16 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783540734345
ISBN-10: 3540734341
Pagini: 370
Ilustrații: XI, 356 p.
Dimensiuni: 155 x 235 x 24 mm
Greutate: 1.05 kg
Ediția:2007
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seriile Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3540734341
Pagini: 370
Ilustrații: XI, 356 p.
Dimensiuni: 155 x 235 x 24 mm
Greutate: 1.05 kg
Ediția:2007
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seriile Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
Invited Talk.- Case Based Reasoning and the Search for Knowledge.- Aspects of Classification and Prediction.- Subsets More Representative Than Random Ones.- Concepts for Novelty Detection and Handling Based on a Case-Based Reasoning Process Scheme.- An Efficient Algorithm for Instance-Based Learning on Data Streams.- Softening the Margin in Discrete SVM.- Feature Selection Using Ant Colony Optimization (ACO): A New Method and Comparative Study in the Application of Face Recognition System.- Outlier Detection with Streaming Dyadic Decomposition.- VISRED –Numerical Data Mining with Linear and Nonlinear Techniques.- Clustering.- Clustering by Random Projections.- Lightweight Clustering Technique for Distributed Data Mining Applications.- Web Mining.- Predicting Page Occurrence in a Click-Stream Data: Statistical and Rule-Based Approach.- Improved IR in Cohesion Model for Link Detection System.- Improving a State-of-the-Art Named Entity Recognition System Using the World Wide Web.- Data Mining in Medicine.- ISOR-2: A Case-Based Reasoning System to Explain Exceptional Dialysis Patients.- The Role of Prototypical Cases in Biomedical Case-Based Reasoning.- Applications of Data Mining.- A Search Space Reduction Methodology for Large Databases: A Case Study.- Combining Traditional and Neural-Based Techniques for Ink Feed Control in a Newspaper Printing Press.- Active Learning Strategies: A Case Study for Detection of Emotions in Speech.- Neural Business Control System.- A Framework for Discovering and Analyzing Changing Customer Segments.- Collaborative Filtering Using Electrical Resistance Network Models.- Visual Query and Exploration System for Temporal Relational Database.- Towards an Online Image-Based Tree Taxonomy.- Distributed Generative Data Mining.- Time Series andFrequent Pattern Mining.- Privacy-Preserving Discovery of Frequent Patterns in Time Series.- Efficient Non Linear Time Series Prediction Using Non Linear Signal Analysis and Neural Networks in Chaotic Diode Resonator Circuits.- Association Minnig.- Using Disjunctions in Association Mining.